Breast cancer detection by imaging with hybrid classifier

Autores/as

  • Joaquim Osterwald Frota Moura Filho Universidade Federal do Ceará
  • Marcelo Estevão da Silva Universidade Federal do Ceará
  • Sara Danielle de Souza Hospital Regional Norte
  • Márcio André Baima Amora Universidade Federal do Ceará

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1353

Palabras clave:

Clasificación de imágenes, Cáncer de mama, Aprendizaje híbrido

Resumen

Objetivos: Desarrollar algoritmos de aprendizaje automático (ML) para una clasificación precisa de imágenes de ultrasonido para respaldar el diagnóstico de cáncer de mama. Método: Implementación de un nuevo modelo de aprendizaje híbrido que combina las técnicas de LightGBM, Multilayer Perceptron Network (MLP), Support Vector Machine (SVM) y Relativistic Particle Swarm Weight Optimization (RPSO). Resultados: El modelo clasificador obtenido arrojó una precisión del 98% en los datos de prueba, por lo que ofrece una alta precisión. Conclusión: El modelo propuesto obtuvo resultados superiores a los trabajos encontrados en la literatura, lo que lo convierte en una herramienta de apoyo al diagnóstico prometedora.Objetivos: El cáncer de mama es una de las condiciones más prevalentes y letales entre las mujeres, con una alta tasa de mortalidad. Es esencial garantizar un diagnóstico preciso y precoz para iniciar el tratamiento en las etapas iniciales y aumentar las probabilidades de supervivencia.

Biografía del autor/a

Joaquim Osterwald Frota Moura Filho, Universidade Federal do Ceará

Me., Programa de Pós-Graduação em Engenharia de Teleinformática (PPGETI), Universidade Federal do Ceará, Fortaleza (CE), Brasil.

Marcelo Estevão da Silva, Universidade Federal do Ceará

Me., Programa de Pós-Graduação em Engenharia Elétrica e de Computação (PPGEEC), Universidade Federal do Ceará, Sobral (CE), Brasil.

Sara Danielle de Souza, Hospital Regional Norte

Esp., Hospital Regional Norte (HRN), Sobral (CE), Brasil.

Márcio André Baima Amora, Universidade Federal do Ceará

Prof. Dr., Programa de Pós-Graduação em Engenharia Elétrica e de Computação (PPGEEC), Universidade Federal do Ceará, Sobral (CE), Brasil.

Citas

INCA. (2022). Instituto Nacional de Câncer. Recuperado de: <https://www.gov.br/inca/pt-br/assuntos/cancer/numeros/>. Acessado em 18 mar 2023.

Chamorro HM, Colturato PL, Fattori NCM. "Câncer de mama: fatores de risco e a importância da detecção precoce." Revista Científica Eletrônica de Ciências Aplicadas. 2021; 1 (1).

Raza A, et al. "DeepBreastCancerNet: A novel deep learning model for breast cancer detection using ultrasound images." Applied Sciences. 2023; 13(4): 2082. DOI: https://doi.org/10.3390/app13042082

Abdul Halim AA, Andrew AM, Mohd Yasin MN, Abd Rahman MA, Jusoh M, Veeraperumal V, Rahim HA, Illahi U, Abdul Karim MK, Scavino E. Existing and Emerging Breast Cancer Detection Technologies and Its Challenges: A Review. Applied Sciences. 2021; 11(22):10753. DOI: https://doi.org/10.3390/app112210753

Rehman MZU, et al. "An Efficient Automated Technique for Classification of Breast Cancer Using Deep Ensemble Model." Computer Systems Science and Engineering. 2023; 46(1). DOI: https://doi.org/10.32604/csse.2023.035382

Joshi RC et al. "An efficient deep neural network based abnormality detection and multi-class breast tumor classification." Multimedia Tools and Applications. 2022; 81(10). DOI: https://doi.org/10.1007/s11042-021-11240-0

Almutairi SM et al. "An efficient USE-Net deep learning model for cancer detection." International Journal of Intelligent Systems 2023.. DOI: https://doi.org/10.1155/2023/8509433

Manzari ON et al. "MedViT: a robust vision transformer for generalized medical image classification." Computers in Biology and Medicine. 2023; 157: 106791. DOI: https://doi.org/10.1016/j.compbiomed.2023.106791

Yahata E, Winnikow EP, Suyama R, Simões PW. Explicabilidade em Modelos Preditivos de Machine Learning no Câncer de Mama. Journal Health Informatics. 2023 jul; 15(1): 1-14. DOI: https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1090

Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Anais do 31st Conference on Neural Information Processing Systems. 2017; 3146-3154.

Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986; 323(1): 533–536. DOI: https://doi.org/10.1038/323533a0

Cortes C, Vapnik V. Support-vector networks. Machine Learning. 1995; 20(3): 273-297. DOI: https://doi.org/10.1007/BF00994018

Roder M et al. "Harnessing particle swarm optimization through relativistic velocity." 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE. 2020. DOI: https://doi.org/10.1109/CEC48606.2020.9185752

Procópio, Fábio. "Otimização por enxames de partículas: usando uma adaptação de serendipidade". 2018.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Duchesnay MPE. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011; 12: 2825-2830.

Walt​ S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T. Scikit-image: image processing in Python. PeerJ. 2014; 2: 2-18. DOI: https://doi.org/10.7717/peerj.453

Virtanen P, Gommers R, Oliphant T.E et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods. 2020; 17: 261-272. DOI: https://doi.org/10.1038/s41592-019-0686-2

McKinney W. Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in Science Conference (SciPy 2010). 2010; 56-61. DOI: https://doi.org/10.25080/Majora-92bf1922-00a

Harris CR, Millman KJ, Walt SJ, Gommers R, Virtanen P, Cournapeau D et al. Array programming with NumPy. Nature. 2020;585: 357-362. DOI: https://doi.org/10.1038/s41586-020-2649-2

Lemenkova P. Python Libraries Matplotlib, Seaborn and Pandas for Visualization Geo-spatial Datasets Generated by QGIS. Anais do Universitatii "Alexandru Ioan Cuza" din Iasi - seria Geografie. 2020; 64(1): 13-32.

Rosa GH, Rodrigues D, Papa JP. Opytimizer: A Nature-Inspired Python Optimizer. Universidade de São Paulo. 2020.

Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images. Data in Brief. 2020; 28: 104863. DOI: https://doi.org/10.1016/j.dib.2019.104863

Publicado

2024-11-19

Cómo citar

Moura Filho, J. O. F., da Silva, M. E., de Souza, S. D., & Amora, M. A. B. (2024). Breast cancer detection by imaging with hybrid classifier. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1353

Artículos similares

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

También puede {advancedSearchLink} para este artículo.