Predicción de resultados en pacientes hospitalizados por COVID-19

Autores/as

  • Vitoria Martins Rios State University of Rio de Janeiro
  • Matheus Figueiredo Nunes de Carvalho Posto de Saúde Municipal de Maricá
  • Rafaell Dutra Ramos Hospital Federal da Lagoa
  • Thiago Medeiros Carvalho State University of Rio de Janeiro
  • Cristiane Oliveira Faria State University of Rio de Janeiro

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1362

Palabras clave:

Explainable, Resultado COVID-19, Machine Learning

Resumen

Objetivo: Este estudio tiene como objetivo evaluar la eficacia de los modelos de Machine Learning (ML) en la predicción de resultados para pacientes diagnosticados de COVID-19 considerando datos de historias clínicas y pruebas. Método: Se investigaron diversos algoritmos de ML y técnicas explicables sobre datos de evolución clínica de pacientes ingresados en el Hospital Universitario Pedro Ernesto (HUPE) durante 2020 y 2021. Resultados: El modelo Random Forest resultó ser el más eficiente, con una precisión del 74% en la etapa de validación. Además, las técnicas basadas en Inteligencia Artificial Explicable muestran que los cambios en el número de barras y la prescripción de noradrenalina fueron las variables que mayor impacto tuvieron en la predicción de resultados. Conclusión: Los resultados animan a las instituciones sanitarias a utilizar métodos basados en el apoyo a la toma de decisiones para organizar o incluso priorizar la atención a sus pacientes.

Biografía del autor/a

Vitoria Martins Rios, State University of Rio de Janeiro

Undergraduate Student, Mathematical and Statistics Institute, State University of Rio de Janeiro, Rio de Janeiro (RJ), Brazil

Matheus Figueiredo Nunes de Carvalho, Posto de Saúde Municipal de Maricá

M.D., Posto de Saúde Municipal de Maricá, Rio de Janeiro (RJ), Brazil

Rafaell Dutra Ramos, Hospital Federal da Lagoa

M.D., Hospital Federal da Lagoa, Rio de Janeiro (RJ), Brazil.

Thiago Medeiros Carvalho, State University of Rio de Janeiro

PhD Student/Lecturer, Mathematical and Statistics Institute, State University of Rio de Janeiro, Rio de Janeiro (RJ), Brazil

Cristiane Oliveira Faria, State University of Rio de Janeiro

PhD/Associate Professor, Mathematical and Statistics Institute, State University of Rio de Janeiro, Rio de Janeiro (RJ), Brazil.

Citas

Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: Data mining, inference, and prediction. In Springer, chapter 15; 2009.

Quinlan J R. Induction of decision trees. Machine Learning. 1986;1(1):81–106.

Breiman L. Random Forests. Machine Learning. 2001; 45 (1):5–32.

Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’16, New York, NY, USA. Association for Computing Machinery. 2016; 785–794.

Fukushima K, Miyake S. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition. Competition and Cooperation in Neural Nets. Lecture Notes in Biomathematics. v 45. Springer. 1986;267–285.

Haykin S. Redes Neurais. 2ed. Bookman; 2001.

Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing Systems. Curran Associates, Inc.; v.30; 2017.

Silva AO, Santos BS, Tondato R, Lima RHP. Uso de machine learning para previsão da evolução de casos de srag incluindo casos de COVID-19 considerando variáveis clínicas e demográficas. Trabalho de conclusão de curso. Universidade Tecnológica Federal do Paraná (RIUT); 2021.

Wollenstein-Betech S, Silva AAB, Fleck JL, Cassandras CG, Paschalidis IC. Physiological and socioeconomic characteristics predict COVID-19 mortality and resource utilization in Brazil. PLOS ONE; 2020;15(10):e0240346.

Hu C, Liu Z, Jiang Y, Shi O, Zhang X, Xu K, Suo C, Wang Q, Song Y, Yu K, Mao X, Wu X, Wu M, Shi T, Jiang W, Mu L, Tully DC, Xu L, Jin L, Li S, Tao X, Zhang T, Chen X. Early prediction of mortality risk among patients with severe COVID-19, using machine learning. International Journal of Epidemiology. 2020; 49(6):1918–1929.

Hastie T, tibshirani R. Generalized Additive Models. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis; 1990.

Stone M. Cross-Validatory Choice and Assessment of Statistical Predictions". Journal of the Royal Statistical Society, Series B (Methodological). 1974; 36 (2): 111–147.

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research. 2002;16: 321–357.

Goutte C, Gaussier E. A probabilistic interpretation of precision, recall and f-score, with implication for evaluation. In Losada, D. E. and Fernández-Luna, J. M., editors, Advances in Information Retrieval. Springer Berlin Heidelberg. 2005; 345–359.

Liu H, Motoda, H. Perspectives of Feature Selection. Springer US, Boston, MA. 1998; 17-41.

Holanda WD, Silva LC, César Sobrinho AAC. Estratégias Preditivas na Detecção do Agravamento do Quadro Clínico de Pacientes com COVID-19: Uma Revisão de Escopo J. Health Inform. 2021 Outubro-Dezembro; 13(4): 128-32.

Publicado

2024-11-19

Cómo citar

Rios, V. M., de Carvalho, M. F. N., Ramos, R. D., Carvalho, T. M., & Faria, C. O. (2024). Predicción de resultados en pacientes hospitalizados por COVID-19. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1362

Artículos similares

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

También puede {advancedSearchLink} para este artículo.