Classificação da COVID-19 em Radiografias do Tórax Utilizando Redes Neurais Profundas e Padrões Binários Locais
Palabras clave:
Aprendizado Profundo, Coronavírus, RadiografiaResumen
Objetivos: O trabalho é desenvolver um algoritmo de classificação de imagens de raios-x do tórax para auxiliar na detecção de pacientes infectados pelo SARS-COV-2. Métodos: O método proposto neste trabalho consiste em realizar um pré-processamento das imagens, destacando as características texturais, a fim de criar um vetor descritor baseado em padrões locais binários. A detecção de padrões e a criação do modelo de classificação é realizada utilizando uma Rede Neural Totalmente Conectada. Resultados: Os experimentos para avaliar o método foram realizados seguindo o protocolo da validação cruzada k-fold. Foram obtidos uma taxa de acerto médio de 96.52% e uma sensibilidade de 94%. Conclusão: Conclui-se que o método proposto neste trabalho tem importante impacto para auxiliar os radiologistas na detecção de pacientes com COVID-19, com alto grau de confidência, podendo atuar como uma segunda avaliação de um exame por imagem.Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.