Comparando Deep e Transfer Learning na Classificação de Imagens da Membrana Timpânica
Palabras clave:
Aprendizado de Máquina, Redes Neurais, Processamento de Imagens Assistida por ComputadorResumen
Objetivos: As redes neurais de aprendizado profundo compreendem técnicas que produzem os melhores resultados na tarefa de classificação de imagens. Em especialidades como a radiologia e a dermatologia, as redes neurais têm contribuído na identificação, por meio de imagens, de tumores e melanomas respectivamente. Método: No contexto deste artigo, explora-se o uso das redes neurais para diagnóstico de otites, por meio de imagens da membrana timpânica. Considerando esta tarefa, o método seguido compreendeu a aquisição de imagens do conduto auditivo externo humano de pacientes saudáveis, com otite e com cerumen. Resultado: Posteriormente, constituiu-se dois modelos, sendo o primeiro baseado em uma arquitetura deep learning e o segundo utilizando transfer learning. Como resultado, identificou-se que o modelo produzido por meio de transfer learning apresentou melhores resultados. Conclusão: A acurácia obtida na tarefa de classificação foi de 96%, revelando a aptidão do método para a classificação e diagnóstico esperados.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Maurício Koenigkam Santos, Carine Geltrudes Webber
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.