Optimización de la detección de reacciones adversas a medicamentos con la informatización de Trigger Tool

Autores/as

  • Cássio Alexandre Oliveira Rodrigues Departamento de Farmácia - Centro de Ciências da Saúde - Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brasil. Farmácia - Hospital Unimed, Natal, Rio Grande do Norte, Brasil.
  • Haline Tereza Matias de Lima Costa Farmácia - Hospital Unimed, Natal, Rio Grande do Norte, Brasil.
  • Edineide da Costa Pereira Fulco Farmácia - Hospital Unimed, Natal, Rio Grande do Norte, Brasil.
  • Rand Randall Martins Departamento de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brasil. Professor titular no Departamento de Farmácia da Universidade Federal do Rio Grande do Norte.

DOI:

https://doi.org/10.59681/2175-4411.v15.i1.2023.984

Palabras clave:

Farmacovigilancia, Informatica en Salud, Seguridad del Paciente

Resumen

Objetivo: Evaluar los impactos que la informatización de los disparadores utilizados en el proceso de investigación activa de reacciones adversas a medicamentos (RAM) promovió a un servicio de farmacovigilancia. Metodología: Se realizó un estudio observacional y retrospectivo con datos procedentes de la dispensación de medicamentos clasificados como "disparadores" en las fichas médicas electrónicas, donde el sistema informatizado de información sanitaria (SIS) generaba informes con datos del paciente y del medicamento que se le dispensaba, eliminando la fase manual de la investigación. Resultado: Se produjo un aumento del 48,5% en la media mensual de identificación y notificación de RAM en la institución en comparación con los períodos anteriores a la informatización. Conclusión: Los resultados muestran la relevancia que el SIS puede conferir a los servicios de farmacovigilancia, permitiendo mejorar la precisión de la metodología de detección activas de RAM, reducir el tiempo de ejecución del proceso de trabajo y optimizar la logística de trabajo.

Citas

Jha A, Pronovost P. Toward a safer health care system: the critical need to improve measurement. JAMA. 2016;315(17):1831-2.

Agbabiaka TB, Lietz M, Mira JJ, Warner B. A literature-based economic evaluation of healthcare preventable ad-verse events in Europe. Int J Qual Health Care. 2017;29(1):9-18.

Agrizzi AL, Pereira LC, Figueira PHM. Non-voluntary detection method of adverse drug reactions in oncologic patients. Rev Bras Farm Hosp Serv Saúde. 2013;4(1):6–11.

Rozich JD, Haraden CR, Resar RK. Adverse Drug Event Trigger Tool: A Practical Methodology For Measuring Medication Related Harm. Qual Saf Health Care. 2003;12(3):194–200.

Cano FG, Rozenfeld S. Adverse Drug Events in Hospi-tals: A Systematic Review. Cad Saúde Pública. 2009;25(3):S360–S372.

Mevik K, Hansen TE, Deilkas EC, Ringdal AM, Vonen B. Is a modified Global Trigger Tool method using au-tomatic trigger identification valid when measuring ad-verse events? Int J Qual Health Care. 2019;31(7):535–540.

Musy SN, Ausserhofer D, Schwendimann R, Rothen HU, Jeitziner MM, Rutjes AW et al. Trigger tool-based automated adverse event detection in electronic health records: systematic review. J Med Internet Res. 2018;20(5):e198.

Stockwell DC, Kirkendall E, Muething SE, Kloppen-borg E, Vinodrao H, Jacobs BR. Automated adverse event detection collaborative: electronic adverse event identification, classification, and corrective actions across academic pediatric institutions. J Patient Saf. 2013;9(4):203–10.

Jha AK, Kuperman GJ, Teich JM, Leap L, Shea B, Rittemberg E, et al. Identifying adverse drug events: de-velopment of a computer-based monitor and compari-son with chart review and stimulated voluntary report. J Am Med Inform Assoc. 1998;5(3):305–14.

Lemon V, Stockwell DC. Automated detection of ad-verse events in children. Pediatr Clin North Am. 2012;59(6):1269–78.

World Health Organization. WHO. International drug monitoring: the role of national centres. Report of a WHO meeting. World Health Organization technical re-port series. 1972;498:1–25.

Naranjo CA, Busto U, Sellers EM, Sandor P, Ruiz I, Roberts EA, et al. A Method For Estimating The Prob-ability Of Adverse Drug Reactions. Clin Pharmacol Ther. 1981;30(2):239–45.

Khan LM, Al-Harthi SE, Osman AM, Sattar MA, Ali AS. Dilemmas of the causality assessment tools in the diag-nosis of adverse drug reactions. Saudi Pharm J. 2016;24(4):485-93.

Comfort S, Dorrell D, Meireis S, Fine J. MOdifiedNA-Ranjo Causality Scale for ICSRs (MONARCSi): A Deci-sion Support Tool for Safety Scientists. Drug Saf. 2018;41(11):1073-1085.

Shukla AK, Jhaj R, Misra S, Ahmed SN, Nanda M, Chaudhary D. Agreement between WHO-UMC causality scale and the Naranjo algorithm for causality assessment of adverse drug reactions. J Family Med Prim Care. 2021;10(9): 3303–3308.

Santos TO, Pereira LP, Silveira DT. Implementation of Health Information Systems: A Systematic Review. Reciis – Rev Eletron Comun Inf Inov Saúde. 2017;11(3):1–11.

Coleman JJ, Pontefract SK. Adverse drug reactions. Clin Med (Lond). 2016;16(5):481-485.

Publicado

2023-06-19

Cómo citar

Rodrigues, C. A. O., Costa, H. T. M. de L., Fulco, E. da C. P., & Martins, R. R. (2023). Optimización de la detección de reacciones adversas a medicamentos con la informatización de Trigger Tool. Journal of Health Informatics, 15(1), 24–30. https://doi.org/10.59681/2175-4411.v15.i1.2023.984

Número

Sección

Artículo Original

Artículos similares

<< < 14 15 16 17 18 19 20 21 22 23 > >> 

También puede {advancedSearchLink} para este artículo.

Artículos más leídos del mismo autor/a