Rede neural artificial aplicada ao diagnóstico de câncer de próstata
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1371Palavras-chave:
Rede Neural Artificial, Diagnóstico, Câncer de próstataResumo
Objetivo: Desenvolver um método para auxiliar no diagnóstico de câncer de próstata utilizando Rede Neural Artificial aplicada às variáveis clínicas. Método: Foi realizada uma pesquisa observacional retrospectiva em 274 prontuários médicos do Hospital Universitário da Universidade Federal do Maranhão. Foram utilizadas as variáveis clínicas: idade, raça, hipertensão arterial sistêmica, diabetes mellitus, tabagismo, etilismo, toque retal e PSA total. Foi criado um modelo de Rede Neural Artificial para classificação preditiva. Resultados: O modelo apresentou acurácia de 80%, sensibilidade de 80%, especificidade de 80% e área sob a curva ROC de 0,9027. Conclusão: Obteve-se um excelente desempenho na predição do câncer de próstata. Este método pode ser incorporado à prática clínica, pois médicos e pacientes podem colher os benefícios dele, reduzindo biópsias desnecessárias, sem comprometer a capacidade de diagnosticar o câncer de próstata.
Referências
Kim MH, Yoo S, Choo MS, Cho MC, Son H, Jeong H. The role of the serum 25-OH vitamin D level on detecting prostate cancer in men with elevated prostate-specific antigen levels. Sci Rep. 2022 Aug;12:14089. Available from: https://doi.org/10.1038/s41598-022-17563-8. DOI: https://doi.org/10.1038/s41598-022-17563-8
Lee C, Light A, Alaa A, Thurtle D, Schaar M, Gnanapragasam VJ. Application of a novel machine learning framework for predicting non-metastatic prostate cancer-specific mortality in men using the Surveillance, Epidemiology, and End Results (SEER) database. The Lancet Digital Health. 2021 Mar;3:158-165. Available from: https://doi.org/10.1016/S2589-7500(20)30314-9. DOI: https://doi.org/10.1016/S2589-7500(20)30314-9
American Cancer Society. Key Statistics for Prostate Cancer [Internet]. 2024 [cited 2024 Jan 19]. Available from: https://www.cancer.org/cancer/types/prostate-cancer/about/key-statistics.html.
INCA. Câncer de Próstata. Instituto Nacional de Câncer [Internet]. 2023 [cited 2023 Aug 16]. Available from: https://www.inca.gov.br/tipos-de-cancer/cancer-de-prostata.
American Cancer Society. Prostate Cancer Risk Factors. [Internet]. 2023 [cited 2023 Nov 22]. Available from: https://www.cancer.org/cancer/types/prostate-cancer/causes-risks-prevention/risk-factors.html.
Cosma G, McArdle SE, Foulds GA, Hood SP, Reeder S, Johnson C, et al. Prostate Cancer: Early Detection and Assessing Clinical Risk Using Deep Machine Learning of High Dimensional Peripheral Blood Flow Cytometric Phenotyping Data. Front Immunol. 2021 Dec;12:786828. Available from: https://doi.org/10.3389/fimmu.2021.786828. DOI: https://doi.org/10.3389/fimmu.2021.786828
Correas JM, Halpern EJ, Barr RG, Ghai S, Walz J, Bodard S, Dariane C, Rosette J, Advanced ultrasound in the diagnosis of prostate cancer, World J. Urol. 2020 Apr;39:661-676. Available from: https://doi.org/10.1007/s00345-020-03193-0. DOI: https://doi.org/10.1007/s00345-020-03193-0
Nasrabadi NM. Pattern Recognition and Machine Learning. Journal of Electronic Imaging. 2007 Oct;16(4):049901. Available from: https://doi.org/10.1117/1.2819119. DOI: https://doi.org/10.1117/1.2819119
Faceli K, Lorena AC, Gama J, Carvalho ACPLF. Inteligência Artificial: Uma Abordagem de Aprendizagem de Máquina. 2ª edição. Editora LTC – Livros Técnicos e Científicos. Rio de Janeiro, 2021.
Fonseca AU, Felix JP, Vieira GS, Rocha BM, Nogueira EA, Araújo CEE, et al. Diagnosticando Tuberculose com Redes Neurais Artificiais e Recursos BPPC. J Health Inform [Internet]. 20º de julho de 2023 [citado 16º de maio de 2024];15(Especial). Disponível em: https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/1106 DOI: https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1106
Santos PD, Yahata E, Piheiro TS, Oliveira FS de, Simões PW. Algoritmos de Machine Learning para Predição da Sobrevida do Câncer de Mama. J Health Inform [Internet]. 20º de julho de 2023 [citado 16º de maio de 2024];15(Especial). Disponível em: https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/1091 DOI: https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1091
Nacional Cancer Institute. Prostate cancer risk factors. American Cancer Society [Online], 2023. Prostate Cancer. Available from: https://www.cancer.org/cancer/types/prostate-cancer/causes-risks-prevention/risk-factors.html.
Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging, Radiographics. 2017 Feb;37(2):505–515. Available from: https://doi.org/10.1148/rg.2017160130. DOI: https://doi.org/10.1148/rg.2017160130
Kohavi R. A study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, in: International joint Conference on artificial intelligence. 1995 Aug;2:1137-1145. Available from: https://dl.acm.org/doi/10.5555/1643031.1643047.
Wang X, Yang W, Weinreb J, Han J, Li Q, Kong X, et al. Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning. Sci Rep. 2017 Nov;7:15415. Available from: https://doi.org/10.1038/s41598-017-15720-y. DOI: https://doi.org/10.1038/s41598-017-15720-y
Liu J, Wang ZQ, Li M, Zhou MY, Yu YF, Zhan WW. Establishment of two new predictive models for prostate cancer to determine whether to require prostate biopsy when the PSA level is in the diagnostic gray zone (4–10 ng ml−1). Asian Journal of Andrology. 2019 Mar;22(2):213-216. Available from: https://doi.org/10.4103/aja.aja_46_19. DOI: https://doi.org/10.4103/aja.aja_46_19
Liu J, Dong B, Qu W, Wang J, Xu Y, Yu S, et al. Using clinical parameters to predict prostate cancer and reduce the unnecessary biopsy among patients with PSA in the gray zone. Sci Rep. 2020 Mar;10:5157. Available from: https://doi.org/10.1038/s41598-020-62015-w. DOI: https://doi.org/10.1038/s41598-020-62015-w
Park JY, Yoon S, Park MS, Choi H, Bae JH, Moon DG, et al. Development and External Validation of the Korean Prostate Cancer Risk Calculator for High-Grade Prostate Cancer: Comparison with Two Western Risk Calculators in an Asian Cohort. PLOS ONE. 2017 Jan;12(1):0168917. Available from: https://doi.org/10.1371/journal.pone.0168917. DOI: https://doi.org/10.1371/journal.pone.0168917
Yoo S, Gujrathi I, Haider MA, Khalvati F. Prostate Cancer Detection using Deep Convolutional Neural Networks. Sci Rep. 2019 Dec;9:19518. Available from: https://doi.org/10.1038/s41598-019-55972-4. DOI: https://doi.org/10.1038/s41598-019-55972-4
Chen Y, Xu C, Zhang Z, Zhu A, Xu X, Pan J, et al. Prostate cancer identification via photoacoustic spectroscopy and machine learning. Photoacoustics. 2021 Sep;23:100280. Available from: https://doi.org/10.1016/j.pacs.2021.100280. DOI: https://doi.org/10.1016/j.pacs.2021.100280
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
A submissão de um artigo ao Journal of Health Informatics é entendida como exclusiva e que não está sendo considerada para publicação em outra revista. A permissão dos autores para a publicação de seu artigo no J. Health Inform. implica na exclusiva autorização concedida aos editores para incluí-lo na revista. Ao submeter um artigo, ao autor será solicitada a permissão eletrônica de um Termo de Transferência de Direitos Autorais. Uma mensagem eletrônica será enviada ao autor correspondente confirmando o recibo do manuscrito e o aceite da Declaração de Direito Autoral.