Association and Classification Data Mining Algorithms Comparison over Medical Datasets
Palavras-chave:
Data Mining, Classification, AssociationResumo
Objectives: Compare Data Mining algorithms related to Classification and Association tasks over medical datasets about dermatology, vertebral column and breast cancer patients, analyzing which is the best one over each of these datasets. Methods: The classification algorithms are ran over these datasets and compared using precision, F-measure, ROC curve and Kappa performance metrics. For associaton task, the Apriori algorithm is ran to get a significant number of rules with confidence above 90%. Results: For diagnostics prediction about breast cancer and dermatology issues, the best classification algorithm was BayesNet and for vertebral column was the Logistic Model Tree. For association task, were extracted 100 knowledge rules for breast cancer and dermatology issues with confidence higher than 90% while for vertebral column were found 18 with same confidence. Conclusion: The comparison was useful to prove the possibility of using Data Mining algorithms to help Medicine decision engine with good precision.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
A submissão de um artigo ao Journal of Health Informatics é entendida como exclusiva e que não está sendo considerada para publicação em outra revista. A permissão dos autores para a publicação de seu artigo no J. Health Inform. implica na exclusiva autorização concedida aos editores para incluí-lo na revista. Ao submeter um artigo, ao autor será solicitada a permissão eletrônica de um Termo de Transferência de Direitos Autorais. Uma mensagem eletrônica será enviada ao autor correspondente confirmando o recibo do manuscrito e o aceite da Declaração de Direito Autoral.