Classificação de padrões de esclerodermia utilizando deep learning
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1300Palavras-chave:
Esclerodermia, Classificação, Deep LearningResumo
Objetivo: A esclerodermia é uma doença que não é conhecida a causa e tem como consequência o enrijecimento da pele e dos órgãos internos. Diante disso, este trabalho tem como objetivo desenvolver modelos de deep learning para auxiliar os médicos na avaliação da progressão e mortalidade da doença. Método: Foram desenvolvidos modelos de classificação de padrões PIU e PINE com a arquitetura MobileNetV2, VGG16, ResNet50 e EfficientNet para imagens de tomografia computadorizada de pacientes com esclerodermia. Resultados: Todos os modelos alcançaram acurácia de 100% nos conjuntos de treino, validação e teste e, portanto, foi possível realizar a diferenciação dos padrões apresentados nas imagens de tomografia computadorizada de pacientes que estiveram no Hospital Pedro Ernesto durante o período de 2017 e 2022. Conclusão: Dentre os modelos avaliados, o melhor é a MobileNetV2 devido possuir a menor quantidade de parâmetros entre todas as arquiteturas avaliadas neste trabalho.
Referências
Sociedade Brasileira de Reumatologia (2017, October 27). Esclerodermia - Sociedade Brasileira de Reumatologia.
Leite, C, Maia, A. "Sintomas de doença e adaptação psicológica em pacientes brasileiros com esclerodermia". Revista Brasileira de Reumatologia 2013; 53(5):405–411.
Steen, V, Oddis, C, Conte, C, Janoski, J, Casterline, G, Medsger, T. "Incidence of systemic sclerosis in Allegheny County, Pennsylvania. A twenty-year study of hospital-diagnosed cases, 1963-1982". Arthritis Rheum 1997; 40(3):441–445.
Frank van den Hoogen, Dinesh Khanna, Jaap Fransen, Sindhu R Johnson, Murray Baron, Alan Tyndall, Marco Matucci-Cerinic, Raymond P Naden, Thomas A Medsger, J, Patricia E Carreira, Gabriela Riemekasten, Philip J Clements, Christopher P Denton, Oliver Distler, Yannick Allanore, Daniel E Furst, Armando Gabrielli, Maureen D Mayes, Jacob M van Laar, James R Seibold, Laszlo Czirjak, Virginia D Steen, Murat Inanc, Otylia Kowal-Bielecka, Ulf Muller-Ladner, Gabriele Valentini, Douglas J Veale, Madelon C Vonk, Ulrich A Walker, Lorinda Chung, David H Collier, Mary Ellen Csuka, Barri J Fessler, Serena Guiducci, Ariane Herrick, Vivien M Hsu, Sergio Jimenez, Bashar Kahaleh, Peter A Merkel, Stanislav Sierakowski, Richard M Silver, Robert W Simms, John Varga, Janet E Pope. "2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative". Annals of the Rheumatic Diseases 2013; 72(11):1747–1755.
Desai, S, Veeraraghavan, S, Hansell, D, Nikolakopolou, A, Goh, N, Nicholson, A, Colby, T, Denton, C, Black, C, Bois, R, Wells, A. "CT Features of Lung Disease in Patients with Systemic Sclerosis: Comparison with Idiopathic Pulmonary Fibrosis and Nonspecific Interstitial Pneumonia". Radiology 2004; 232(2):560-567.
Jonathan G. Goldin, David A. Lynch, Diane C. Strollo, Robert D. Suh, Dean E. Schraufnagel, Philip J. Clements, Robert M. Elashoff, Daniel E. Furst, Sarinnapha Vasunilashorn, Michael F. McNitt-Gray, Mathew S. Brown, Michael D. Roth, Donald P. Tashkin. "High-Resolution CT Scan Findings in Patients With Symptomatic Scleroderma-Related Interstitial Lung Disease". Chest 2008; 134(2):358–367.
Goodfellow, I, Bengio, Y, Courville, A. Deep Learning. MIT Press; 2016.
Alexander Selvikvåg Lundervold, Arvid Lundervold. "An overview of deep learning in medical imaging focusing on MRI". Zeitschrift für Medizinische Physik 2019; 29(2):102-127
Montagnon, A. "Deep learning workflow in radiology: a primer". Insights into Imaging 2020; 11(1):22.
Prastyo Eko Susanto, Arrie Kurniawardhan, Dhomas Hatta Fudholi, Ridho Rahmadi. "A Mobile Deep Learning Model on Covid-19 CT-Scan Classification". International Journal of Artificial Intelligence Research 2022; 6(2).
TÜRK V, ÇATAL REİS H, KAYA S. Derin öğrenme mimarilerini kullanarak göğüs BT görüntülerinden otomatik Covid-19 tahmini. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Gumushane University Journal of Science and Technology Institute; 2022. Disponível em: http://doi.org/10.17714/gumusfenbil.1002738
Almeida, A, Bilbao, A, Ruby, L, Rominger, M, López-De-Ipiña, D, Dahl, J, ElKaffas, A, Sanabria, SLung ultrasound for point-of-care COVID-19 pneumonia stratification: computer-aided diagnostics in a smartphone. First experiences classifying semiology from public datasets. In 2020 IEEE International Ultrasonics Symposium (IUS) 2020 (pp. 1-4).
Torrey L, Shavlik J. Transfer Learning. Handbook of Research on Machine Learning Applications and Trends. IGI Global; 2010. p. 242–64. Disponível em: http://doi.org/10.4018/978-1-60566-766-9.ch011
Yu X, Wang J, Hong QQ, Teku R, Wang SH, Zhang YD. Transfer learning for medical images analyses: A survey. Vol. 489, Neurocomputing. Elsevier BV; 2022. p. 230–54. Disponível em: http://doi.org/10.1016/j.neucom.2021.08.159
Zhang X, Zhou J, Sun W, Kumar Jha S. A Lightweight CNN Based on Transfer Learning for COVID-19 Diagnosis. Vol. 72, Computers, Materials & Continua. Computers, Materials and Continua (Tech Science Press); 2022. p. 1123–37. Disponível em: http://doi.org/10.32604/cmc.2022.02458
Hilmizen N, Bustamam A, Sarwinda D. The Multimodal Deep Learning for Diagnosing COVID-19 Pneumonia from Chest CT-Scan and X-Ray Images. 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI). IEEE; 2020. Disponível em: http://doi.org/10.1109/ISRITI51436.2020.9315478
Martins JVG, Gregório MP, Baffa M de FO, Coelho AM. Classificação da COVID-19 em Radiografias do Tórax Utilizando Redes Neurais Profundas e Padrões Binários Locais. J Health Inform. 15º de março de 2021 [citado 29º de abril de 2024];12. Disponível em: https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/843
Trombetta GBW, Fröhlich W da R, Rigo SJ, Rodrigues CA. Aplicação de Deep Learning para Diagnóstico de Pneumonia Causada por COVID -19 a partir de Imagens de Raio X. J Health Inform. 15º de março de 2021 [citado 29º de abril de 2024];12. Disponível em: https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/828
Mikołajczyk, A, Grochowski, MData augmentation for improving deep learning in image classification problem. In 2018 International Interdisciplinary PhD Workshop (IIPhDW) 2018 (pp. 117-122).
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks.
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv; 2014. Disponível em: https://arxiv.org/abs/1409.1556
He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. arXiv; 2015. Disponível em: https://arxiv.org/abs/1512.03385
Tan M, Le QV. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv. 2019; Disponível em: https://arxiv.org/abs/1905.11946
Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv; 2014. Disponível em: https://arxiv.org/abs/1412.6980
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0.
A submissão de um artigo ao Journal of Health Informatics é entendida como exclusiva e que não está sendo considerada para publicação em outra revista. A permissão dos autores para a publicação de seu artigo no J. Health Inform. implica na exclusiva autorização concedida aos editores para incluí-lo na revista. Ao submeter um artigo, ao autor será solicitada a permissão eletrônica de um Termo de Transferência de Direitos Autorais. Uma mensagem eletrônica será enviada ao autor correspondente confirmando o recibo do manuscrito e o aceite da Declaração de Direito Autoral.