Sobre a análise de sinais de voz para o diagnóstico da doença de Parkinson
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1305Palavras-chave:
Diagnóstico, Aprendizado de Máquina, Doença de ParkinsonResumo
Objetivo: Este estudo investiga se o possível viés na sobreamostragem via janelamento de dados de marcha em indivíduos com Doença de Parkinson (DP) também ocorre em sinais vocais. Um estudo anterior levantou a hipótese de que amostras distintas de um mesmo indivíduo não devem ser tratadas independentemente, dado o risco de enviesamento dos modelos. Método: Usamos sinais de voz de 24 indivíduos com DP e 8 saudáveis, e os algoritmos K-Nearest Neighbors (KNN), Support Vector Machine (SVM) e Random Forest (RF). A validação cruzada foi feita com Leave-one-out (LOOCV), adaptada para cenários com e sem viés nos dados de treinamento. Resultados: Modelos avaliados sem considerar o viés apresentaram performances inflacionadas, enquanto a abordagem rigorosa mostrou resultados mais modestos. Conclusão: Amostras do mesmo indivíduo em treinamento e teste podem inflar a performance dos modelos. A correta aplicação da sobreamostragem é crucial para desenvolver modelos confiáveis para o diagnóstico de DP.
Referências
Prabhavathi, K., and Shantanu Patil. Tremors and bradykinesia. Techniques for Assessment of Parkinsonism for Diagnosis and Rehabilitation (2022): 135-149.
Braak, Heiko, and Eva Braak. Pathoanatomy of Parkinson’s disease. Journal of neurology 247 (2000): II3-II10.
Tanner, Caroline M. Epidemiology of Parkinson’s disease. Neurologic clinics 10.2 (1992): 317-329.
Stewart A. Factor, William J. Weiner (2008) Parkinson Disease - Diagnosis and Clinical Management 2nd ed; 77-94
Ho, Aileen K., et al. Speech impairment in a large sample of patients with Parkinson's disease. Behavioural neurology 11.3 (1998): 131-137.
Atarachi, J., and E. Uchida. A clinical study of Parkinsonism. Recent Adv Res Nerv Syst 1959; 3: 871 882 (1959).
Little, Max, et al. Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. Nature Precedings (2008): 1-1.
Aich, Satyabrata, et al. A supervised machine learning approach using different feature selection techniques on voice datasets for prediction of Parkinson’s disease. 2019 21st International Conference on Advanced Communication Technology (ICACT). IEEE, 2019.
Ouhmida, Asmae, et al. Voice-Based Deep Learning Medical Diagnosis System for Parkinson's Disease Prediction. 2021 International Congress of Advanced Technology and Engineering (ICOTEN). IEEE, 2021.
Rana, Arti, et al. An efficient machine learning approach for diagnosing Parkinson’s disease by utilizing voice features. Electronics 11.22 (2022): 3782.
Govindu, Aditi, and Sushila Palwe. Early detection of Parkinson's disease using machine learning. Procedia Computer Science 218 (2023): 249-261.
Chagas, A., Bucci, G., Félix, J., Fonseca, A., Nascimento, H., & Soares, F. (2024). Avaliando a Sobreamostragem de Dados Temporais de Marcha no Diagnóstico Automático de Doenças Neurodegenerativas. In Anais do XXIV Simpósio Brasileiro de Computação Aplicada à Saúde, (pp. 567-578). Porto Alegre: SBC. doi:10.5753/sbcas.2024.2776
Quoc Cuong Ngo, Mohammod Abdul Motin, Nemuel Daniel Pah, Drotar P, Kempster P, Kumar D. Computerized analysis of speech and voice for Parkinson’s disease: A systematic review. Computer Methods and Programs in Biomedicine. 2022 Nov 1;226:107133–3.
Faceli, K., et al. Inteligência Artificial: Uma abordagem de aprendizagem de máquina, LTC, Ed. Rio de Janeiro: Grupo Editorial Nacional (2011).
Duda, Richard O., and Peter E. Hart. Pattern classification. John Wiley & Sons, 2006.
Altman DG, Bland JM. Diagnostic tests. 1: Sensitivity and specificity. BMJ. 1994 Jun 11;308(6943):1552. doi: 10.1136/bmj.308.6943.1552. PMID: 8019315; PMCID: PMC2540489.
Gunawardana, Asela, and Guy Shani. A survey of accuracy evaluation metrics of recommendation tasks. Journal of Machine Learning Research 10.12 (2009).
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0.
A submissão de um artigo ao Journal of Health Informatics é entendida como exclusiva e que não está sendo considerada para publicação em outra revista. A permissão dos autores para a publicação de seu artigo no J. Health Inform. implica na exclusiva autorização concedida aos editores para incluí-lo na revista. Ao submeter um artigo, ao autor será solicitada a permissão eletrônica de um Termo de Transferência de Direitos Autorais. Uma mensagem eletrônica será enviada ao autor correspondente confirmando o recibo do manuscrito e o aceite da Declaração de Direito Autoral.