Evaluating large language models for anaphylaxis detection in clinical notes
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1364Palavras-chave:
Anafilaxia, Modelos de Linguagem de Grande Escala, Inteligência ArtificialResumo
Objetivo: Este estudo tem como objetivo avaliar o potencial de quatro Modelos de Linguagem de Grande Escala (LLMs) (GPT-4 Turbo, GPT-3.5 Turbo, Gemini 1.0 Pro e OpenChat 3.5) na detecção de anafilaxia em Registros Médicos Eletrônicos (EMRs). Método: O método empregado envolveu a análise de 150 relatórios médicos, utilizando diferentes prompts para testar a capacidade dos LLMs em identificar a anafilaxia. Resultados: Os resultados indicam que todos os modelos obtiveram zero falsos negativos, com destaque para o GPT-4 Turbo, que alcançou 97% de acurácia e 91% de precisão. Conclusão: Conclui-se que os LLMs demonstram potencial para auxiliar na identificação da anafilaxia, especialmente o GPT-4 Turbo. A pesquisa reforça a importância do design eficiente de prompts para otimizar a acurácia dos resultados.
Referências
Simons FER, Ardusso LR, Bilò MB, Cardona V, Ebisawa M, El-Gamal YM, et al. International consensus on (ICON) anaphylaxis. World Allergy Organ J. 2014;7(1):9. doi: 10.1186/1939-4551-7-9. PMID: 24920969; PMCID: PMC4038846.
Ensina LF, Min TK, Félix MMR, de Alcântara CT, Costa C. Acute urticaria and anaphylaxis: Differences and similarities in clinical management. Front Allergy. 2022;3:840999. Available from: https://www.frontiersin.org/articles/10.3389/falgy.2022.840999.
Cardona V, Ansotegui IJ, Ebisawa M, El-Gamal Y, Fernandez Rivas M, Fineman S, et al. World Allergy Organization anaphylaxis guidance 2020. World Allergy Organ J. 2020 Oct;13(10):100472. doi: 10.1016/j.waojou.2020.100472. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1939455120303756.
Liu X, Shi Y, Zhang D, Chen M, Xu Y, Zhao J, et al. Management of immune related adverse events through electronic multidisciplinary consultation: Five years of experience from Peking Union Medical College Hospital. J Clin Oncol. 2023;41(16_suppl)
. doi: 10.1200/JCO.2023.41.16_suppl.e14712. Available from: https://doi.org/10.1200/JCO.2023.41.16_suppl.e14712.
Gao Y, Li R, Caskey J, Dligach D, Miller T, Churpek MM, et al. Leveraging a medical knowledge graph into large language models for diagnosis prediction. arXiv [cs]. 2023 Aug. Available from: http://arxiv.org/abs/2308.14321.
Carrell DS, Gruber S, Floyd JS, Bann MA, Cushing-Haugen KL, Johnson RL, et al. Improving methods of identifying anaphylaxis for medical product safety surveillance using natural language processing and machine learning. Am J Epidemiol. 2023 Feb;192(2):283-295. doi: 10.1093/aje/kwac182. Available from: https://academic.oup.com/aje/article/192/2/283/6795959.
Kural KC, Mazo I, Walderhaug M, Santana-Quintero L, Karagiannis K, Thompson EE, et al. Using machine learning to improve anaphylaxis case identification in medical claims data. JAMIA Open. 2023 Oct;6(4). doi: 10.1093/jamiaopen/ooad090. Available from: https://academic.oup.com/jamiaopen/article/doi/10.1093/jamiaopen/ooad090/7331170.
Tu H, Han L, Nenadic G. Extraction of medication and temporal relation from clinical text using neural language models. arXiv [cs]. 2023 Oct. doi: 10.48550/arXiv.2310.02229. Available from: http://arxiv.org/abs/2310.02229.
Pan J, Zhang Z, Peters SR, Vatanpour S, Walker RL, Lee S, et al. Cerebrovascular disease case identification in inpatient electronic medical record data using natural language processing. Brain Inform. 2023 Sep;10(1):22. doi: 10.1186/s40708-023-00203-w. Available from: https://doi.org/10.1186/s40708-023-00203-w.
Lin E, Zwolinski R, Wu JT, La J, Goryachev S, Huhmann L, et al. Machine learning-based natural language processing to extract PD-L1 expression levels from clinical notes. Health Inform J. 2023 Jul;29(3):14604582231198021. doi: 10.1177/14604582231198021. Available from: http://journals.sagepub.com/doi/10.1177/14604582231198021.
Zitu MM, Zhang S, Owen DH, Chiang C, Li L. Generalizability of machine learning methods in detecting adverse drug events from clinical narratives in electronic medical records. Front Pharmacol. 2023 Jul;14:1218679. doi: 10.3389/fphar.2023.1218679. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2023.1218679/full.
Afshar M, Adelaine S, Resnik F, Mundt MP, Long J, Leaf M, et al. Deployment of real-time natural language processing and deep learning clinical decision support in the electronic health record: Pipeline implementation for an opioid misuse screener in hospitalized adults. JMIR Med Inform. 2023 Apr;11. doi: 10.2196/44977. Available from: https://medinform.jmir.org/2023/1/e44977.
Oliveira LES, Peters AC, Silva AMP, Gebeluca CP, Gumiel YB, Cintho LMM, et al. SemClinBr - a multi-institutional and multi-specialty semantically annotated corpus for Portuguese clinical NLP tasks. J Biomed Semantics. 2022 May;13(1):1. doi: 10.1186/s13326-022-00269-1. Available from: https://doi.org/10.1186/s13326-022-00269-1.
Wang G, Cheng S, Zhan X, Li X, Song S, Liu Y. OpenChat: Advancing open-source language models with mixed-quality data. arXiv [cs.CL]. 2024. Available from: https://arxiv.org/abs/2309.11235.
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0.
A submissão de um artigo ao Journal of Health Informatics é entendida como exclusiva e que não está sendo considerada para publicação em outra revista. A permissão dos autores para a publicação de seu artigo no J. Health Inform. implica na exclusiva autorização concedida aos editores para incluí-lo na revista. Ao submeter um artigo, ao autor será solicitada a permissão eletrônica de um Termo de Transferência de Direitos Autorais. Uma mensagem eletrônica será enviada ao autor correspondente confirmando o recibo do manuscrito e o aceite da Declaração de Direito Autoral.