Identificação automática do uso de máscaras de proteção facial: um estudo comparativo

Autores

  • José Voltan Instituto Militar de Engenharia - IME
  • Ronaldo Goldschmidt Instituto Militar de Engenharia
  • Jefferson Oliva Universidade Tecnológica Federal do Paraná – UTFPR
  • Julio Duarte Instituto Militar de Engenharia - IME
  • Dalcimar Casanova Universidade Tecnológica Federal do Paraná – UTFPR
  • Marcelo Teixeira Universidade Tecnológica Federal do Paraná – UTFPR

DOI:

https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1077

Palavras-chave:

Máscaras, Aprendizado de Máquina, Aprendizado Profundo

Resumo

O uso de máscaras de proteção é uma importante medida para diminuir a transmissão da COVID-19 e de outras doenças. O presente trabalho teve como objetivo realizar um estudo comparativo entre diferentes modelos de aprendizado profundo aplicados na identificação da máscara de proteção (pessoa sem máscara, com máscara ou com máscara incorretamente posicionada). Métodos: foram implementados e avaliados os modelos de Redes Neurais Convolucionais MobileNetV3, Xception, VGG19. Foi utilizada a técnica de transferência de aprendizado na implementação e ajuste desses modelos. Resultados: Os modelos avaliados apresentaram acurácias que variaram entre 42% e 86%, esta última obtida pelo modelo Xception, superando os resultados reportados na literatura correlata. Conclusão: Os resultados apontam para o potencial promissor do modelo Xception que, ao viabilizar o monitoramento automático, permite a orientação de pessoas quanto ao correto uso de máscaras de proteção, dessa forma, contribuindo para diminuir o espalhamento de doenças através das vias aéreas.

Biografia do Autor

José Voltan, Instituto Militar de Engenharia - IME

Programa de Pós-graduação em Sistemas e Computação, Instituto Militar de Engenharia - IME, Rio de Janeiro (RJ), Brasil.

Ronaldo Goldschmidt, Instituto Militar de Engenharia

Programa de Pós-graduação em Sistemas e Computação, Instituto Militar de Engenharia - IME, Rio de Janeiro (RJ), Brasil.

Jefferson Oliva, Universidade Tecnológica Federal do Paraná – UTFPR

Programa de Pós-Graduação em Engenharia Elétrica, Universidade Tecnológica Federal do Paraná – UTFPR, Pato Branco (PR), Brasil.

Julio Duarte, Instituto Militar de Engenharia - IME

Programa de Pós-graduação em Sistemas e Computação, Instituto Militar de Engenharia - IME, Rio de Janeiro (RJ), Brasil.

Dalcimar Casanova, Universidade Tecnológica Federal do Paraná – UTFPR

Programa de Pós-Graduação em Engenharia Elétrica, Universidade Tecnológica Federal do Paraná – UTFPR, Pato Branco (PR), Brasil.

Marcelo Teixeira, Universidade Tecnológica Federal do Paraná – UTFPR

Programa de Pós-Graduação em Engenharia Elétrica, Universidade Tecnológica Federal do Paraná – UTFPR, Pato Branco (PR), Brasil.

Referências

Freitas CM, Barcellos C, Villela DAM, organizadores. Covid-19 no Brasil: cenários epidemiológicos e vigilância em saúde [Internet]. Série Informação para ação na Covid-19. Fiocruz; 2021. doi: https://doi.org/10.7476/9786557081211

Organização Pan-Americana da Saúde. Orientação sobre o uso de máscaras no contexto da COVID-19: Orientação provisória, 6 de abril de 2020.

Agência Nacional de Vigilância Sanitária (Brasil). Nota técnica GVIMS/GGTES/ANVISA nº 03/2022: orientações para prevenção e controle da Monkeypox nos serviços de saúde. Brasília: ANVISA; 2022.

Pereira Junior A, Teixeira F, Homem T. Aplicação de visão computacional para o monitoramento do uso de máscaras de proteção. CONICT. 2020.

Costa VL, Teixeira EH, Mafra SB, Rodrigues JJPC. On the Performance Analysis of a TensorFlow based Neural Network for Face Mask Detection. 2021 IWCMC. 2021.

Das A, Ansari MW, and Basak R, Covid-19 Face Mask Detection Using TensorFlow, Keras and OpenCV. 2020 IEEE 17th INDICON. 2020, 1-5, doi: 10.1109/INDICON49873.2020.9342585.

Quiñonez-Cuenca F, Maza-Merchán C, Cuenca-Maldonado N, Quiñones-Cuenca M, Torres R, Sandoval F, et al. Evaluación de AIoT en modelos computacionales en la nube y en el borde aplicado a la detección de mascarillas. Ingenius. 2022 Jun; (27).

Vich I. Medical masks dataset images tfrecords [Internet]. Kaggle. 2020. [cited 2022 Jun 06]. Available from: https://bit.ly/3er0tb8

Ge S, Li J, Ye Q, Luo Z. MAFA [Internet]. 2018. [cited 2022 Jun 06]. Available from: https://bit.ly/3FBC52o

Siradjuddin IA, Agustien, Muntasa A. Faster Region-based Convolutional Neural Network for Mask Face Detection. 5th ICICoS. 2021. 282-286, doi: 10.1109/ICICoS53627.2021.9651744.

Mangalampalli R. MAFA data [Internet]. Kaggle. 2020. [cited 2022 Jun 10]. Available from: https://www.kaggle.com/datasets/rahulmangalampalli/mafa-data

DataFlair. Download Face Mask Data – DataFlair [Internet]. [cited 2022 Jun 08]. Available from: https://data-flair.training/blogs/download-face-mask-data/

Wang Z, Wang G, Huang B, Xiong Z, Hong Q, Wu H, et al. Masked face recognition dataset and application. arXiv; 2020. doi https://doi.org/10.48550/arxiv.2003.09093

Bhandary P. Prajnasb [Internet]. Github. 2020. [cited 2022 Jun 12]. Available from: https://github.com/prajnasb/observations/tree/master/experiements/data

Maranhão A. Face Mask Detection [Internet]. Kaggle. 2020. [cited 2022 Jun 12]. Available from: https://www.kaggle.com/andrewmvd/face-mask-detection

Howard A, Sandler M, Chu G, Chen L-C, Chen B, Tan M, et al. Searching for MobileNetV3 [Internet]. arXiv; 2019. doi: 10.48550/ARXIV.1905.02244 [cited 2022 Jun 25]. Available from: https://arxiv.org/abs/1905.02244

Chollet F. Xception: Deep learning with depthwise separable convolutions [Internet]. arXiv; 2017. doi: 10.48550/ARXIV.1610.02357 [cited 2022 Jun 27]. Available from: https://arxiv.org/abs/1610.02357

Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv; 2014. doi: 10.48550/ARXIV.1409.1556

Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural network. Advances in neural information processing systems 2012; 25.

NVIDIA. FFHQ dataset [Internet]. 2019. [cited 2022 Jun 25]. Available from: https://github.com/NVlabs/ffhq-dataset

Cabani A, Hammoudi K, Benhabiles H, Melkemi M. MaskedFace-Net – A dataset of correctly/incorrectly masked face images in the context of COVID-19. Smart Health. 2021; 19. [cited 2022 Jun 25]. Available from: https://www.sciencedirect.com/science/article/pii/S2352648320300362

Hammoudi K, Cabani A, Benhabiles H, Melkemi M. Validating the correct wearing of protection mask by taking a selfie: design of a mobile application "CheckYourMask" to limit the spread of COVID-19. CMES-Computer Modeling in Engineering & Sciences. 2020. 124 (3):1049-59.

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G, et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv; 2016. doi 10.48550/ARXIV.1603.04467.

Chollet F, et al. Keras [Internet]. GitHub; 2015. [cited 2022 Jun 29]. Available from: https://github.com/fchollet/keras.

Géron A. Mãos à Obra Aprendizado de Máquina com Scikit-Learn e TensorFlow: Conceitos, Ferramentas e Técnicas Para a Construção de Sistemas Inteligentes. Rio de Janeiro: Alta Books; 2019.

Downloads

Publicado

20-07-2023

Como Citar

Voltan, J., Goldschmidt, R., Oliva, J., Duarte, J., Casanova, D., & Teixeira, M. (2023). Identificação automática do uso de máscaras de proteção facial: um estudo comparativo. Journal of Health Informatics, 15(Especial). https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1077

Artigos Semelhantes

<< < 3 4 5 6 7 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)