Matching algorithm for homogeneous base generation for case-control study

Authors

  • Alexandre da Costa Sena State University of Rio de Janeiro
  • Alexandre Ribeiro Fernandes Azevedo State University of Rio de Janeiro
  • Gabriel Pereira Mendes State University of Rio de Janeiro
  • Karla Figueiredo State University of Rio de Janeiro
  • Luís Cristóvão Moraes Sobrino Pôrto State University of Rio de Janeiro

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1293

Keywords:

Big Data, Case Control Study, Matching algorithm

Abstract

Objective: generate balanced control bases in relation to the case base for a case-control study (CCS) and, therefore, minimize selection bias. Method: implementation and evaluation of a matching algorithm that generates homogeneous control bases, based on the characteristics of the case base. Results: the algorithm is capable of producing a homogeneous control file, with the same characteristics as the control base through three different real data sets. Furthermore, the algorithm is generic and easy to use and can be adopted for any case-control study. Conclusion: this algorithm has the potential to greatly help the scientific community, increasing the reliability of research carried out through case-control studies, generating a homogeneous database, helping to avoid selection bias.

Author Biographies

Alexandre da Costa Sena, State University of Rio de Janeiro

PhD/Associate Professor, Matematical and Statistics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil.

Alexandre Ribeiro Fernandes Azevedo, State University of Rio de Janeiro

Msc/PhD student, Matematical and Statistics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil.

Gabriel Pereira Mendes, State University of Rio de Janeiro

Msc/PhD student, Matematical and Statistics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil.

Karla Figueiredo, State University of Rio de Janeiro

PhD/Associate Professor, Matematical and Statistics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil.

Luís Cristóvão Moraes Sobrino Pôrto, State University of Rio de Janeiro

PhD/Associate Professor, Piquet Carneiro University Polyclinic (PPC), State University of Rio de Janeiro, Rio de Janeiro, Brazil

References

Tenny, S., Kerndt, C., and Hoffman, M. (2023). Case control studies. StatPearls.

Haley, K. E. and Huber, K. E. (2023). Chapter 38 - case-control study. In Eltorai, A. E., Bakal, J. A., Kim, D. W., and Wazer, D. E., editors, Translational Radiation Oncology, Handbook for Designing and Conducting Clinical and Translational Research, pages 223–229. Academic Press

Rose, S. and Laan, M. J. (2009). Why match? investigating matched case-control study

designs with causal effect estimation. The international journal of biostatistics, 5(1)

Pinto, R., Polmann, H., Massignan, C., Stefani, C. M., and de L. Canto, G. (2021). Tipos

de vieses em estudos observacionais

Dash, S., S. S. S. M. e. a. (2019). Big data in healthcare: management, analysis and future prospects. J Big Data, 6(54).

Stanfill, B., Reehl, S., Bramer, L., Nakayasu, E. S., Rich, S. S., Metz, T. O., Rewers, M.,

Webb-Robertson, B. J., and Group, T. S. (2019). Extending classification algorithms

to case-control studies. Biomedical engineering and computational biology, 10

Mendes, G. P., Pôrto, L. C. M. S., Lima, C., Santiago, H., Almeida, S., and Sena, A. C.

(2023). Análise da prevalência de alelos hla em pacientes com covid-19. Journal of Health Informatics, 15(Especial)

Epi Info. Epi Info. Accessed: 2022-04-02

Published

2024-11-19

How to Cite

Sena, A. da C., Azevedo, A. R. F., Mendes, G. P., Figueiredo, K., & Pôrto, L. C. M. S. (2024). Matching algorithm for homogeneous base generation for case-control study. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1293

Similar Articles

<< < 10 11 12 13 14 15 

You may also start an advanced similarity search for this article.