Arbovirus case prediction in Recife using reservoir computing

Authors

  • Ana Clara Gomes da Silva Universidade de Pernambuco
  • Cláudia Priscila Nunes Silva Universidade de Pernambuco
  • Clarisse Lins de Lima Universidade Federal de Pernambuco
  • Danilo Wanderley Lapa Universidade Federal de Pernambuco
  • Felipe Estevão da Silva Universidade Federal de Pernambuco
  • Mariana Marinho da Silva Andrade Universidade Federal de Pernambuco
  • Arianne Sarmento Torcate Universidade de Pernambuco
  • Cecília Cordeiro da Silva Universidade Federal de Pernambuco
  • Giselle Machado Magalhães Moreno Universidade Federal de Pernambuco
  • Wellington Pinheiro dos Santos Universidade Federal de Pernambuco

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1298

Keywords:

Reservoir computing, Forecasting Model, Arbovirus Forecasting

Abstract

Objective: Due to the complexity of diagnosing arboviruses, machine learning prediction aims to anticipate outbreaks, speed up treatment and reduce spread. Method: This study proposes applying reservoir computing techniques, incorporating climatic factors, to predict outbreaks and increases in the incidence of these diseases. Results: The models created had values greater than 0.80 for accuracy, precision and recall in predicting cases in Recife, Pernambuco. Conclusion: These models are crucial for decision-making, enabling more effective preventive and control interventions against arboviruses in public health.

Author Biographies

Ana Clara Gomes da Silva, Universidade de Pernambuco

Mestra em Engenharia Biomédica, Universidade de Pernambuco, Recife (PE), Brasil.

Cláudia Priscila Nunes Silva, Universidade de Pernambuco

Mestra em Matemática, Universidade de Pernambuco, Recife (PE), Brasil

Clarisse Lins de Lima, Universidade Federal de Pernambuco

Doutora em Engenharia da Computação, Universidade Federal de Pernambuco, Recife (PE), Brasil

Danilo Wanderley Lapa, Universidade Federal de Pernambuco

Graduando em Sistemas de Informação, Universidade Federal de Pernambuco, Recife (PE), Brasil

Felipe Estevão da Silva, Universidade Federal de Pernambuco

Graduando em Engenharia Eletrônica, Universidade Federal de Pernambuco, Recife (PE), Brasil

Mariana Marinho da Silva Andrade, Universidade Federal de Pernambuco

Graduando em Sistemas de Informação, Universidade Federal de Pernambuco, Recife (PE), Brasil

Arianne Sarmento Torcate, Universidade de Pernambuco

Mestra em Engenharia da Computação, Universidade de Pernambuco, Recife (PE), Brasil

Cecília Cordeiro da Silva, Universidade Federal de Pernambuco

Doutora em Engenharia da Computação, Universidade Federal de Pernambuco, Recife (PE), Brasil

Giselle Machado Magalhães Moreno, Universidade Federal de Pernambuco

Doutora em Neurociências, Universidade Federal de Pernambuco, Recife (PE), Brasil

Wellington Pinheiro dos Santos, Universidade Federal de Pernambuco

Doutor em Engenharia Elétrica, Universidade Federal de Pernambuco, Recife (PE), Brasil

References

SINARE, Akshata B.; BARKADE, Ganesh D. Dengue: A mosquito borne disease. World Journal of Biology Pharmacy and Health Sciences, v. 14, n. 2, p. 251-261, 2023. DOI: https://doi.org/10.30574/wjbphs.2023.14.2.0218

PARIJA, Subhash Chandra. Arboviruses (Arthropod-borne Viruses) and Rodent-borne Viruses. In: Textbook of Microbiology and Immunology. Singapore: Springer Nature Singapore, 2023. p. 825-846. DOI: https://doi.org/10.1007/978-981-19-3315-8_58

VAZIRI, Samira; POUR, Siavash Hamzeh; AKRAMI-MOHAJERI, Fateme. Zika virus as an emerging arbovirus of international public health concern. Osong Public Health and Research Perspectives, v. 13, n. 5, p. 341, 2022. DOI: https://doi.org/10.24171/j.phrp.2022.0101

OEHLER, Erwan et al. Increase in cases of Guillain-Barré syndrome during a Chikungunya outbreak, French Polynesia, 2014 to 2015. Eurosurveillance, v. 20, n. 48, p. 30079, 2015. DOI: https://doi.org/10.2807/1560-7917.ES.2015.20.48.30079

FARIA, Marco Túlio da Silva et al. Saúde e saneamento: uma avaliação das políticas públicas de prevenção, controle e contingência das arboviroses no Brasil. Ciência & Saúde Coletiva, v. 28, p. 1767-1776, 2023. DOI: https://doi.org/10.1590/1413-81232023286.07622022

ESPINAL, Marcos A. et al. Emerging and reemerging Aedes-transmitted arbovirus infections in the region of the Americas: implications for health policy. American journal of public health, v. 109, n. 3, p. 387-392, 2019. DOI: https://doi.org/10.2105/AJPH.2018.304849

PÉREZ, Tatiana Betancur et al. Covid-19 and Dengue Coinfection: Case Report. Japan Journal of Clinical & Medical Research, v. 1, n. 3, p. 1-2, 2021. DOI: https://doi.org/10.47363/JJCMR/2021(1)113

MARDEKIAN, Stacey K. et al. Diagnostic options and challenges for dengue and chikungunya viruses. BioMed research international, v. 2015, 2015. DOI: https://doi.org/10.1155/2015/834371

VALERIO, Fernanda et al. The neurological sequelae of pandemics and epidemics. Journal of Neurology, v. 268, n. 8, p. 2629-2655, 2021. DOI: https://doi.org/10.1007/s00415-020-10261-3

DA SILVA, Cecilia Cordeiro et al. Spatiotemporal forecasting for dengue, chikungunya fever and Zika using machine learning and artificial expert committees based on meta-heuristics. Research on Biomedical Engineering, v. 38, n. 2, p. 499-537, 2022. DOI: https://doi.org/10.1007/s42600-022-00202-6

LIMA, Clarisse Lins de. Modelagem e simulação da transmissão de arboviroses baseados em agentes inteligentes para predição de casos de dengue, chikungunya e zika. 2020. Dissertação de Mestrado. Universidade Federal de Pernambuco.

FALCO, Javert Guimarães. Estatística aplicada. 2016.

HUANG, Guang-Bin; ZHU, Qin-Yu; SIEW, Chee-Kheong. Extreme learning machine: theory and applications. Neurocomputing, v. 70, n. 1-3, p. 489-501, 2006. DOI: https://doi.org/10.1016/j.neucom.2005.12.126

JAEGER, Herbert. The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany: German National Research Center for Information Technology GMD Technical Report, v. 148, n. 34, p. 13, 2001.

HAYKIN, S.; NIE, Junhong; CURRIE, B. Neural network-based receiver for wireless communications. Electronics Letters, v. 35, n. 3, p. 203-205, 1999. DOI: https://doi.org/10.1049/el:19990177

JAEGER, Herbert. Echo state network. scholarpedia, v. 2, n. 9, p. 2330, 2007. DOI: https://doi.org/10.4249/scholarpedia.2330

STEINER, Peter et al. PyRCN: A toolbox for exploration and application of Reservoir Computing Networks. Engineering Applications of Artificial Intelligence, v. 113, p. 104964, 2022. DOI: https://doi.org/10.1016/j.engappai.2022.104964

RAMOS, Jorge Luis Cavalcanti et al. Um estudo comparativo de classificadores na previsão da evasão de alunos em EAD. In: Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE). 2018. p. 1463. DOI: https://doi.org/10.5753/cbie.sbie.2018.1463

Published

2024-11-19

How to Cite

da Silva, A. C. G., Silva, C. P. N., de Lima, C. L., Lapa, D. W., da Silva, F. E., Andrade, M. M. da S., … dos Santos, W. P. (2024). Arbovirus case prediction in Recife using reservoir computing. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1298

Similar Articles

<< < 6 7 8 9 10 11 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)