A framework for counting alleles in computational clouds

Authors

  • Marcio Nogueira Pereira Silva Universidade do Estado do Rio de Janeiro
  • Luís Cristóvão Pôrto Universidade do Estado do Rio de Janeiro
  • Alexandre da Costa Sena Universidade do Estado do Rio de Janeiro

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1312

Keywords:

Big Data, Computational Clouds, HLA alleles

Abstract

Objective: develop a framework to carry out anthropological comparisons, classify alleles, infer the waiting time of patients requiring transplantation, among other analyses. Method: comparison of donor and patient alleles using a search algorithm to, based on allele counts, perform analysis. To reduce analysis execution time, queries were optimized and parallelized, allowing their efficient execution in computing clouds. Results: the framework is capable of performing analysis in seconds, even on a database that contains more than 5 million records. Conclusion: the proposed framework has the potential to help clinicians/researchers obtain information to improve the organ donation process among unrelated donors.

Author Biographies

Marcio Nogueira Pereira Silva, Universidade do Estado do Rio de Janeiro

PhD student, Institute of Mathematics and Statistics, Universidade do Estado do Rio de Janeiro, Rio de Janeiro (RJ), Brasil.

Luís Cristóvão Pôrto, Universidade do Estado do Rio de Janeiro

PhD/Professor, Histocompatibility and Cryopreservation Laboratory, Universidade do Estado do Rio de Janeiro, Rio de Janeiro (RJ), Brasil.

Alexandre da Costa Sena, Universidade do Estado do Rio de Janeiro

PhD/Professor, Institute of Mathematics and Statistics, Universidade do Estado do Rio de Janeiro, Rio de Janeiro (RJ), Brasil.

References

Singh AK, McGuirk JP. Allogeneic Stem Cell Transplantation: A Historical and Scientific Overview. Cancer Research (2016) 76:6445-6451.

Tiercy JM. How to select the best available related or unrelated donor of hematopoietic stem cells? Haematologica (2016) 101(6):680-687.

Gragert L. et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. New England Journal of Medicine, 2014, 371(4):339-348.

Burns LJ, Miller JP, Confer DL. Past, present and future of the national marrow donor program. Revista de Hematología. 2016;17(3):195-204.

Dehn J. et al. HapLogic: A predictive human leukocyte antigen matching algorithm to enhance rapid identification of optimal unrelated hematopoietic stem cell sources for transplantation. Biology of Blood and Marrow Transplantation. 2016, 22(11):2038-2046.

Bochtler, W. et al. A Comparative Reference Study for the Validation of HLA-Matching Algorithms in the Search for Allogeneic Hematopoietic Stem Cell donors and cord blood units. HLA. 2016, 87(6).

Marcio N. P. Silva, Karla Figueiredo, Luís C. M. S. Pôrto, Alexandre C. Sena. Uma Abordagem para Análise de Padrões em Banco de Dados de Doadores de Órgãos. Anais do Simpósio Brasileiro de Computação Aplicado a Saúde. 2022.

Lancaster AK, Single RM, et al. PyPop: A mature open-source software pipeline for population genomics. Frontiers in Immunology. 2024, 15.

Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010, 10(3):564-567.

Nunes K, Aguiar V, Silva M. et al. How Ancestry Influences the Chances of Finding Unrelated Donors: An Investigation in Admixed Brazilians. Frontiers in Immunology. 2020, 11.

REDOME - Registro Nacional de Doadores Voluntários de Medula Óssea. 2024.

Published

2024-11-19

How to Cite

Silva, M. N. P., Pôrto, L. C., & Sena, A. da C. (2024). A framework for counting alleles in computational clouds. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1312

Similar Articles

<< < 4 5 6 7 8 9 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)