Identifying suicidal ideation in texts using semi-supervised learning

Authors

  • João Pedro Cavalcanti Azevedo Universidade Federal do Maranhão
  • Adonias Caetano de Oliveira Universidade Federal do Delta do Parnaíba
  • Ariel Soares Teles Instituto Federal do Maranhão

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1321

Keywords:

Emotion Analysis, Suicidal Ideation, Mental Health

Abstract

Objective: To improve the Boamente model using semi-supervised learning methods for the identification of suicidal ideation in non-clinical texts written in Brazilian Portuguese, in order to improve its performance. Method: New data was collected and different semi-supervised learning methods with an emphasis on emotion analysis were applied to improve the existing model. Results: The results showed an improvement of between 2.39% and 4.30% in the accuracy metric compared to the original model, with the self-learning method achieving the best performance. Conclusion: The application of semi-supervised learning methods improved the performance of the Boamente model for identifying suicidal ideation. This study therefore contributes to the development of a more effective tool for mental health professionals in suicide prevention, helping them to make more assertive decisions when monitoring their patients.

Author Biographies

João Pedro Cavalcanti Azevedo, Universidade Federal do Maranhão

Mestrando em Ciência da Computação, Programa de Pós-graduação em Ciência da Computação, Universidade Federal do Maranhão, São Luís (MA), Brasil.

Adonias Caetano de Oliveira, Universidade Federal do Delta do Parnaíba

Doutorando em Biotecnologia, Programa de Pós-graduação em Biotecnologia, Universidade Federal do Delta do Parnaíba, Paranaíba (PI), Brasil.

Ariel Soares Teles, Instituto Federal do Maranhão

Doutor em Engenharia Elétrica, Instituto Federal do Maranhão, Araioses (MA), Brasil.

References

Shin S, Kim K. Prediction of suicidal ideation in children and adolescents using machine learning and deep learning algorithm: A case study in South Korea where suicide is the leading cause of death. Asian Journal of Psychiatry [Internet]. 2023 Oct 1;88:103725. DOI: https://doi.org/10.1016/j.ajp.2023.103725

Choi M, Eun Hae Lee, Joshua Kirabo Sempungu, Yo Han Lee. Long-term trajectories of suicide ideation and its socioeconomic predictors: A longitudinal 8-year follow-up study. Social science & medicine. 2023 Jun 1;326:115926–6. DOI: https://doi.org/10.1016/j.socscimed.2023.115926

Facchinetti T, Benetti G, Giuffrida D, Nocera A. slr-kit: A semi-supervised machine learning framework for systematic literature reviews. Knowledge-Based Systems. 2022 Sep;251:109266. DOI: https://doi.org/10.1016/j.knosys.2022.109266

Chen H, Han W, Soujanya Poria. SAT: Improving Semi-Supervised Text Classification with Simple Instance-Adaptive Self-Training. arXiv (Cornell University). 2022 Jan 1. DOI: https://doi.org/10.18653/v1/2022.findings-emnlp.456

Coppersmith DDL, Dempsey W, Kleiman EM, Bentley KH, Murphy SA, Nock MK. Just-in-Time Adaptive Interventions for Suicide Prevention: Promise, Challenges, and Future Directions. Psychiatry. 2022 Jul 18;1–17. DOI: https://doi.org/10.31234/osf.io/eg9fx

Diniz EJS, Fontenele JE, de Oliveira AC, Bastos VH, Teixeira S, Rabêlo RL, et al. Boamente: A Natural Language Processing-Based Digital Phenotyping Tool for Smart Monitoring of Suicidal Ideation. Healthcare. 2022 Apr 8;10(4):698. DOI: https://doi.org/10.3390/healthcare10040698

Torous J, Kiang MV, Lorme J, Onnela JP. New Tools for New Research in Psychiatry: A Scalable and Customizable Platform to Empower Data Driven Smartphone Research. JMIR Mental Health. 2016 May 5;3(2):e16. DOI: https://doi.org/10.2196/mental.5165

Amini MR, Feofanov V, Pauletto L, Hadjadj L, Devijver E, Maximov Y. Self-Training: A Survey [Internet]. arXiv.org. 2023. DOI: https://doi.org/10.2139/ssrn.4875054

Lang H, Agrawal MN, Kim Y, Sontag D. Co-training Improves Prompt-based Learning for Large Language Models [Internet]. proceedings.mlr.press. PMLR; 2022. p. 11985–2003.

Chen Y, Tan X, Zhao B, Chen Z, Song R, Liang J, et al. Boosting Semi-Supervised Learning by Exploiting All Unlabeled Data [Internet]. openaccess.thecvf.com. 2023. p. 7548–57. DOI: https://doi.org/10.1109/CVPR52729.2023.00729

Iscen A, Tolias G, Avrithis Y, Chum O. Label Propagation for Deep Semi-Supervised Learning [Internet]. openaccess.thecvf.com. 2019. p. 5070–9. DOI: https://doi.org/10.1109/CVPR.2019.00521

Chen X, Yu G, Tan Q, Wang J. Weighted samples based semi-supervised classification. Applied soft computing. 2019 Jun 1;79:46–58. DOI: https://doi.org/10.1016/j.asoc.2019.03.005

Souza F, Nogueira R, Lotufo R. BERTimbau: Pretrained BERT Models for Brazilian Portuguese. Intelligent Systems. 2020;403–17. DOI: https://doi.org/10.1007/978-3-030-61377-8_28

Wagner Filho JA, Wilkens R, Idiart M, Villavicencio A. The brWaC Corpus: A New Open Resource for Brazilian Portuguese [Internet]. Calzolari N, Choukri K, Cieri C, Declerck T, Goggi S, Hasida K, et al., editors. ACLWeb. Miyazaki, Japan: European Language Resources Association (ELRA); 2018.

Lasri S, Nfaoui EH, El haoussi F. Suicide Ideation Detection on Social Networks: Short Literature Review. Procedia Computer Science. 2022;215:713–21. DOI: https://doi.org/10.1016/j.procs.2022.12.073

Heckler WF, de Carvalho JV, Barbosa JLV. Machine learning for suicidal ideation identification: A systematic literature review. Computers in Human Behavior. 2022 Mar;128:107095. DOI: https://doi.org/10.1016/j.chb.2021.107095

Ji S, Pan S, Li X, Cambria E, Long G, Huang Z. Suicidal Ideation Detection: A Review of Machine Learning Methods and Applications. IEEE Transactions on Computational Social Systems. 2021 Feb;8(1):214–26. DOI: https://doi.org/10.1109/TCSS.2020.3021467

McMullen L, Parghi N, Rogers ML, Yao H, Bloch-Elkouby S, Galynker I. The role of suicide ideation in assessing near-term suicide risk: A machine learning approach. Psychiatry Research. 2021. Oct;304:114118. DOI: https://doi.org/10.1016/j.psychres.2021.114118

Birjali M, Beni-Hssane A, Erritali M. Machine Learning and Semantic Sentiment Analysis based Algorithms for Suicide Sentiment Prediction in Social Networks. Procedia Computer Science. 2017;113:65–72. DOI: https://doi.org/10.1016/j.procs.2017.08.290

Chatterjee M, Kumar P, Samanta P, Sarkar D. Suicide ideation detection from online social media: A multi-modal feature based technique. International Journal of Information Management Data Insights. 2022 Nov;2(2):100103. DOI: https://doi.org/10.1016/j.jjimei.2022.100103

Published

2024-11-19

How to Cite

Azevedo, J. P. C., de Oliveira, A. C., & Teles, A. S. (2024). Identifying suicidal ideation in texts using semi-supervised learning. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1321

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)