Natural Language Processing for Allergen Identification on Food Labels: An Application in the Brazilian Context

Authors

  • Giovanna Alves Gadelha UFCSPA
  • Renan Augusto Pereira UFCSPA
  • Flávia Magalhães Guedes UFCSPA
  • Ana Trindade Winck UFCSPA

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1325

Keywords:

Natural Language Processing, Food Hypersensitivity, Food Labeling

Abstract

Objective: Food allergies impact a significant portion of the population, presenting challenges to public health. The approach to managing these allergies is by the elimination of specific trigger foods. However, reading and interpreting food labels is challenging due to diverse and inconsistent nomenclature, as well as inadequate regulations. For the Brazilian context, we propose a Natural Language Processing solution, which will be integrated into a dedicated mobile application. Method: To recognize the diverse nomenclatures associated with allergens focusing on Portuguese terms, we developed an allergen database and a named entity recognition model, as well as text preprocessing functions. Results. The evaluation of the models achieved an average precision of 96.50. Conclusion: This solution supports safer dietary practices for individuals with food allergies, providing technological support in obtaining information about the presence of allergens in products.

Author Biographies

Giovanna Alves Gadelha, UFCSPA

Bel., Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre (RS), Brazil.

Renan Augusto Pereira, UFCSPA

Me., Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre (RS), Brazil.

Flávia Magalhães Guedes, UFCSPA

 Me., Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre (RS), Brazil.

Ana Trindade Winck, UFCSPA

Dra., Federal University of Health Sciences of Porto Alegre - UFCSPA, Porto Alegre (RS), Brazil.

References

ASBAI, "Alergia alimentar é o tema central da Semana Mundial," https://asbai.org.br/alergia-alimentar-e-o-tema-central-da-semana-mundial/, 2019.

ANVISA, "Perguntas e respostas sobre rotulagem de alergênicos," https://www.gov.br/anvisa/pt-br/centraisdeconteudo/publicacoes/alimentos/perguntas-e-respostas-arquivos/rotulagem-nutricional_2a-edicao.pdf/view, 2023.

M. Oliveira Andrade, D. Alves, W. Nascimento. "AVALIAÇÃO DA ROTULAGEM DE ALIMENTOS E DA CONFORMIDADE QUANTO A DECLARAÇÃO OBRIGATÓRIA DE ALERGÊNICOS," Alimentos: Ciência, Tecnologia e Meio Ambiente, vol. 3, no. 1, pp. 14–25, 2022.

Martins, L. "Rotulagem de alimentos alergênicos: análise das informaçoes". Hig. aliment 2023:e1113–e1113.

S. SOUZA, "Põe no rótulo. Cartilha de Alergia Alimentar," https://www.poenorotulo.com.br/, 2014.

Brasil, "RDC nº 26, de 02 de julho de 2015," , 2015.

Bilaver, L., et al. "P107 FOOD ALLERGY AND INFORMATICS: USING NATURAL LANGUAGE PROCESSING TO IDENTIFY CLINICAL PREDICTORS IN PROGRESS NOTES," in Annals of Allergy, Asthma & Immunology, vol. 127, no. 5, pp. S41–S42, 2021.

Popovski, G., et al. "FoodIE: A Rule-based Named-entity Recognition Method for Food Information Extraction.," in ICPRAM, vol. 12, pp. 915, 2019.

S. Campese, D. Pozza, "Food classification for inflammation recognition through ingredient label analysis: A real nlp case study," in Intelligent Systems and Applications: Proceedings of the 2020 Intelligent Systems Conference (IntelliSys) Volume 2, 2021, pp. 172–181.

A. Amato, G. Cozzolino, "SafeEat: extraction of information about the presence of food allergens in recipes," in Advances in Intelligent Networking and Collaborative Systems: The 12th International Conference on Intelligent Networking and Collaborative Systems (INCoS-2020) 12, 2021, pp. 194–203.

Bilaver, L., et al. "Natural language processing of pediatric progress notes for the identification of food allergy," in The Journal of Allergy and Clinical Immunology: In Practice, 2023.

Caimmi, D., et al. "Food allergy in primary care," in Acta Bio Medica: Atenei Parmensis, vol. 92, no. Suppl 7, 2021.

Banco Brasileiro de Rotulos de Alimentos, "Banco Brasileiro de Rotulos de Alimentos," https://five.epicollect.net/project/banco-brasileiro-de-rotulos-de-alimentos/, 2021.

Published

2024-11-19

How to Cite

Gadelha, G. A., Pereira, R. A., Guedes, F. M., & Winck, A. T. (2024). Natural Language Processing for Allergen Identification on Food Labels: An Application in the Brazilian Context. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1325

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)