CovNet-UFCSPA: assisting in the diagnosis of pneumonia by coronavirus

Authors

  • Nouara Cândida Xavier Federal University of Health Sciences of Porto Alegre
  • Rochelle Lykawka Hospital de Clínicas de Porto Alegre
  • Alexandre Bacelar Hospital de Clínicas de Porto Alegre
  • Tiago Severo Garcia Hospital de Clínicas de Porto Alegre
  • Thatiane Alves Pianoschi Alva Federal University of Health Sciences of Porto Alegre
  • Mirko Salomón Alva Sánchez Federal University of Health Sciences of Porto Alegre
  • Carla Diniz Lopes Becker Federal University of Health Sciences of Porto Alegre

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1377

Keywords:

COVID-19, Deep Learning, CNN

Abstract

Objetivo: O presente estudo introduz a arquitetura CovNet-UFCSPA, que incorpora dados de pré-processamento de imagens clínicas (raio-X) e algoritmos de aprendizado profundo. Método: Utilizou-se um total de 24.235 imagens para treinamento, validação e teste do modelo, identificando áreas nos raios X que influenciam a decisão do modelo. Resultado: A arquitetura atingiu um recall de 99% na classificação de raios X de pacientes do Hospital de Clínicas de Porto Alegre (HCPA). A aplicação da técnica CLAHE melhorou a região de interesse do raio-X, reduzindo a taxa de falsos negativos de 187 para 9. Conclusão: Comparada com as arquiteturas Resnet50 V2 e Inception V3, a CovNet-UFCSPA demonstrou superioridade em taxas de falsos negativos, verdadeiros positivos e recall.

Author Biographies

Nouara Cândida Xavier, Federal University of Health Sciences of Porto Alegre

M.Sc., Federal University of Health Sciences of Porto Alegre – UFCSPA, Porto Alegre (RS), Brazil.

Rochelle Lykawka, Hospital de Clínicas de Porto Alegre

M.Sc., Hospital de Clínicas de Porto Alegre, Porto Alegre (RS), Brazil, Brazil.

Alexandre Bacelar, Hospital de Clínicas de Porto Alegre

M.Sc., Hospital de Clínicas de Porto Alegre, Porto Alegre (RS), Brazil, Brazil.

Tiago Severo Garcia, Hospital de Clínicas de Porto Alegre

Ph.D, Hospital de Clínicas de Porto Alegre, Porto Alegre (RS), Brazil, Brazil.

Thatiane Alves Pianoschi Alva, Federal University of Health Sciences of Porto Alegre

 Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Mirko Salomón Alva Sánchez, Federal University of Health Sciences of Porto Alegre

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Carla Diniz Lopes Becker, Federal University of Health Sciences of Porto Alegre

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

References

Gong J, Dong H, Xia SQ, Huang YZ, Wang D, Zhao Y, Liu W, Tu S, Zhang M, Wang Q, et al. Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19 pneumonia. MedRxiv. 2020.

Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, Chen H, Mubareka S, Gubbay JB, Chan WCW. Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 2020;14(4):3822-3835.

DATASUS. Equipments of Imaging Used in Health - E - DATASUS. DATASUS. Available at: http://tabnet.datasus.gov.br/tabdata/LivroIDB/2edrev/e18.pdf

Chassagnon G, Vakalopoulou M, Paragios N, Revel MP. Artificial intelligence applications for thoracic imaging. Eur J Radiol. 2020;123:108774.

Nahid AA, Sikder N, Bairagi AK, Razzaque M, Masud M, Kouzani AZ, Mahmud MA, et al. A novel method to identify pneumonia through analyzing chest radiographs employing a multichannel convolutional neural network. Sensors. 2020;20(12):3482.

Rajaraman S, Antani S. Training deep learning algorithms with weakly labeled pneumonia chest X-ray data for COVID-19 detection. medRxiv. 2020.

Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharya UR. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med. 2020;121:103792.

Mittal A, Singh K, Misra DP. Detecting COVID-19 using ResNet deep learning model with X-ray images. Biocybernetics and Biomedical Engineering. 2020.

Takara, K., Nishiyama, Y., & Sone, S. (2022). Artificial Intelligence System for Chest X-ray Diagnosis of COVID-19: Development and Validation Study. Journal of Medical Internet Research, 24(1), e30527.

Nouara Cândida Xavier, Tathiane Alves Pianoschi Alva, Carla Diniz Lopes Becker. Ciências da Saúde: uma abordagem holística. Editora Conhecimento Livre; 2022. Cap 5.

Gonzalez, Rafael C., and Richard E. Woods. Processamento de imagens digitais. Editora Blucher, 2000.

Chollet F. Deep learning with Python. Simon and Schuster; 2021.

Yamashita R, Nishio M, Do RK, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights into Imaging. 2018;9(4):611-629.

O'Shea K, Nash R. An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458. 2015.

Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET). IEEE; 2017. pp. 1-6.

scikit. Sklearn.utils.class_weight.compute_class_weight. [Online]. Available in: https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html. Access at: 2024.

Cross-validation: evaluating estimator performance. [Online]. Available in: https://scikit-learn.org/stable/modules/cross_validation.html. Access at: 2024

Published

2024-11-19

How to Cite

Xavier, N. C., Lykawka, R., Bacelar, A., Garcia, T. S., Alva, T. A. P., Sánchez, M. S. A., & Becker, C. D. L. (2024). CovNet-UFCSPA: assisting in the diagnosis of pneumonia by coronavirus. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1377

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)