Diagnóstico de tuberculosis con redes neuronales artificiales y recursos BPPC

Autores/as

  • Afonso Ueslei Fonseca Universidade Federal de Goiás
  • Juliana Paula Felix Universidade Federal de Goiás
  • Gabriel Silva Vieira Universidade Federal de Goiás
  • Bruno Moraes Rocha Universidade Federal de Goiás
  • Emília Alves Nogueira Universidade Federal de Goiás
  • Carlos Eduardo Egito Araújo Universidade Federal de Goiás
  • Deborah Fernandes Universidade Federal de Goiás
  • Fabrizzio Soares Universidade Federal de Goiás

DOI:

https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1106

Palabras clave:

Tuberculosis, Redes Neuronales, Reconocimiento de Normas Patrones Automatizadas

Resumen

La tuberculosis es una enfermedad grave y contagiosa que mata a millones de personas, siendo un problema de salud pública mundial. Mientras tanto, la Inteligencia Artificial en radiología ha despertado un interés creciente por parte de los investigadores y la industria. Las soluciones para auxiliar el diagnóstico ya son una realidad, pero lejanas a poblaciones vulnerables y regiones subdesarrolladas. Por lo tanto, las soluciones accesibles son fundamentales para las personas que dependen en gran medida de las acciones y servicios públicos. Por lo tanto, proponemos un método de bajo costo computacional y alta eficiencia para ayudar en el diagnóstico de la tuberculosis. Utilizamos imágenes de radiografía de tórax y construimos un modelo de red neuronal artificial con características BPPC con y sin generación de datos sintéticos. Los resultados comparables a la literatura muestran el excepcional desempeño y bajo costo, colocándola como una solución alternativa viable.

Biografía del autor/a

Afonso Ueslei Fonseca, Universidade Federal de Goiás

Instituto de Informática, Universidade Federal de Goiás.

Juliana Paula Felix, Universidade Federal de Goiás

Instituto de Informática, Universidade Federal de Goiás.

Gabriel Silva Vieira, Universidade Federal de Goiás

Instituto de Informática, Universidade Federal de Goiás.

Bruno Moraes Rocha, Universidade Federal de Goiás

Instituto de Informática, Universidade Federal de Goiás

Emília Alves Nogueira, Universidade Federal de Goiás

Instituto de Informática, Universidade Federal de Goiás

Carlos Eduardo Egito Araújo, Universidade Federal de Goiás

Instituto de Informática, Universidade Federal de Goiás

Deborah Fernandes, Universidade Federal de Goiás

Instituto de Informática, Universidade Federal de Goiás

Fabrizzio Soares, Universidade Federal de Goiás

Instituto de Informática, Universidade Federal de Goiás

Citas

WHO, “Global tuberculosis report 2021,” p. 1, 2021.

V. Phillips, “AI has huge potential to address the crisis in medical imaging,” https://thejournalofmhealth.com/ai-has-huge-potential-to-address-the-crisis-in-medical-imaging/, 2022, accessed: 2022-07-17.

L. M. Pinto et al., “Scoring systems using chest radiographic features for the diagnosis of pulmonary tuberculosis in adults: a systematic review,” European Respiratory Journal, vol. 42, no. 2, pp. 480–494, 2013.

S. Kulkarni and S. Jha, “Artificial intelligence, radiology, and tuberculosis: a review,” Academic radiology, vol. 27, no. 1, pp. 71–75, 2020.

P. Lakhani and B. Sundaram, “Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks,” Radiology, vol. 284, no. 2, pp. 574–582, 2017.

A. Chauhan et al., “Role of gist and phog features in computer-aided diagnosis of tuberculosis without segmentation,” PloS one, vol. 9, no. 11, p. e112980, 2014.

S. Vajda et al., “Feature selection for automatic tuberculosis screening in frontal chest radiographs,” Journal of medical systems, vol. 42, no. 8, pp. 1–11, 2018.

A. U. Fonseca et al., “Tuberculosis Detection in Chest Radiography - A Combined Approach of Local Binary Pattern Features and Monarch Butterfly Optimization Algorithm,” in 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE, 2022, pp. 1408–1413.

J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks, vol. 61, pp. 85–117, 2015.

O. Er et al., “Tuberculosis disease diagnosis using artificial neural networks,” Journal of medical systems, vol. 34, no. 3, pp. 299–302, 2010.

A. Fojnica et al. “Dynamical model of tuberculosis-multiple strain prediction based on artificial neural network,” in 2016 5th Mediterranean Conference on Embedded Computing (MECO), 2016, pp. 290–293.

S. Khobragade et al., “Automatic detection of major lung diseases using chest radiographs and classification by feed-forward artificial neural network,” in 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1–5.

Y. Liu et al., “Rethinking computer-aided tuberculosis diagnosis,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

T. Rahman et al., “Reliable Tuberculosis Detection Using Chest X-Ray With Deep Learning, Segmentation and Visualization,” IEEE Access, vol. 8, 2020.

H. N. Ngoc et al., “An efficient approach for tuberculosis diagnosis on chest x-ray,” in 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022.

S. Rajaraman et al., “Improved semantic segmentation of tuberculosis—Consistent findings in chest x-rays using augmented training of modality-specific U-Net models with weak localizations,” Diagnostics, vol. 11, no. 4, p. 616, 2021.

S. I. Nafisah et al., “Tuberculosis detection in chest radiograph using convolutional neural network architecture and explainable artificial intelligence,” Neural Computing and Applications, pp. 1–21, 2022.

B. K. Karaca et al., “Comparative study for tuberculosis detection by using deep learning,” in 2021 44th International Conference on Telecommunications and Signal Processing (TSP), 2021, pp. 88–91.

P. Kovesi et al., “Image features from phase congruency,” Videre: Journal of computer vision research, vol. 1, no. 3, pp. 1–26, 1999.

O. Mohd Rijal et al., “Determining features for discriminating ptb and normal lungs using phase congruency model,” in Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics, 2012, pp. 341–344.

H. Ebrahimian et al., “Phase congruency parameter estimation and discrimination ability in detecting lung disease chest radiograph,” in 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), 2014, pp. 729–734.

S. Shojaeilangari et al., “Feature extraction through binary pattern of phase congruency for facial expression recognition,” in 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV), 2012, pp. 166–170.

D. Dall’Alba and P. Fiorini, “Bipco: ultrasound feature points based on phase congruency detector and binary pattern descriptor,” International journal of computer assisted radiology and surgery, vol. 10, no. 6, pp. 843–854, 2015.

L. Cai et al., “Robust phase-based texture descriptor for classification of breast ultrasound images,” Biomedical engineering online, vol. 14, no. 1, pp. 1–21, 2015.

S. Jaeger et al., “Two public chest x-ray datasets for computer-aided screening of pulmonary diseases,” Quantitative imaging in medicine and surgery, vol. 4, 2014.

N. V. Chawla et al., “Smote: synthetic minority over-sampling technique,” Journal of artificial intelligence research, vol. 16, pp. 321–357, 2002.

L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE.” Journal of machine learning research, vol. 9, no. 11, 2008.

N. A. Almansour et al., “Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study,” Computers in biology and medicine, vol. 109, pp.101–111, 2019.

A. J. Aljaaf et al., “A fusion of data science and feed-forward neural network-based modelling of covid-19 outbreak forecasting in IRAQ,” Journal of Biomedical Informatics, vol. 118, p. 103766, 2021.

S. Sapna et al., “Backpropagation learning algorithm based on levenberg marquardt algorithm,” Comp Sci Inform Technol (CS and IT), vol. 2, pp. 393–398, 2012.

T. Keiderling, “Der brockhaus,” Groβe Lexika und W ̈orterb ̈ucher Europas: Europ ̈aische Enzyzklop ̈adien und W ̈orterb ̈ucher in historischen Portr ̈ats, 2012.

B. P. Health. [Online], “BELARUS TUBERCULOSIS PORTAL,” 2020, Available: http://tuberculosis.by/. [Accessed on 09-June-2020].

A. Rosenthal et al., “The tb portals: an open-access, web-based platform for global drug-resistant-tuberculosis data sharing and analysis,” Journal of clinical microbiology, vol. 55, no. 11, pp. 3267–3282, 2017.

X. Wang et al., “Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases,” IEEE conference on computer vision and pattern recognition, 2017, pp. 2097–2106.

Publicado

2023-07-20

Cómo citar

Fonseca, A. U., Felix, J. P., Vieira, G. S., Rocha, B. M., Nogueira, E. A., Araújo, C. E. E., … Soares, F. (2023). Diagnóstico de tuberculosis con redes neuronales artificiales y recursos BPPC. Journal of Health Informatics, 15(Especial). https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1106

Artículos similares

1 2 3 4 5 6 7 8 > >> 

También puede {advancedSearchLink} para este artículo.

Artículos más leídos del mismo autor/a