Aplicaciones de modelos de lenguaje de gran tamaño en el tratamiento de la depresión: una revisión sistemática
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1318Palabras clave:
Salud Mental, Depresión, Modelos de Lenguaje de Gran EscalaResumen
Objetivo: Este estudio revisa el uso de Modelos de Lenguaje de Gran Escala (LLMs) en el campo de la salud mental, enfocándose específicamente en el tratamiento de la depresión. Método: Se analizaron 18 artículos de un total inicial de 121, explorando cómo los LLMs ayudan en la toma de decisiones clínicas y en la interacción entre profesionales de la salud mental y pacientes deprimidos. Resultados: Los hallazgos principales muestran que los LLMs pueden aumentar la precisión en la detección de síntomas y mejorar las intervenciones terapéuticas a través de interfaces conversacionales avanzadas. Conclusión: El resumen destaca lagunas en la investigación existente y resalta la contribución del estudio para una mejor comprensión de la aplicabilidad de los LLMs en contextos clínicos.
Citas
Liu S, Zheng C, Demasi O, Sabour S, Li Y, Yu Z, Jiang Y, Huang M. Towards Emotional Support Dialog Systems. In: Zong C, Xia F, Li W, Navigli R, editors. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers); 2021 Aug; Online. Association for Computational Linguistics; p. 3469–3483. Disponível em: https://aclanthology.org/2021.acl-long.269. DOI: 10.18653/v1/2021.acl-long.269. DOI: https://doi.org/10.18653/v1/2021.acl-long.269
Grové C. Co-developing a mental health and wellbeing chatbot with and for young people. Frontiers in Psychiatry. 2021;11. DOI: https://doi.org/10.3389/fpsyt.2020.606041
Demszky D, et al. Using large language models in psychology. Nature Reviews Psychology. 2023;2(11):688–701. DOI: https://doi.org/10.1038/s44159-023-00241-5
Siddaway AP, Wood A, Hedges L. How to do a systematic review: A best practice guide for conducting and reporting narrative reviews, meta-analyses, and meta-syntheses. Annual Review of Psychology. 2019;70:747-770. DOI: 10.1146/annurev-psych-010418-102803. DOI: https://doi.org/10.1146/annurev-psych-010418-102803
Carrera-Rivera A, et al. How-to conduct a systematic literature review: A quick guide for computer science research. MethodsX. 2022;9:101895. DOI: https://doi.org/10.1016/j.mex.2022.101895
Page M, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Journal of Clinical Epidemiology. 2021.
Hwang G, et al. Assessing the potential of chatgpt for psychodynamic formulations in psychiatry: An exploratory study. Psychiatry Research. 2024;331:115655. DOI: https://doi.org/10.1016/j.psychres.2023.115655
Furukawa TA, et al. Harnessing AI to optimize thought records and facilitate cognitive restructuring in smartphone CBT: An exploratory study. Cognitive Therapy and Research. 2023;47(6):887–893. DOI: https://doi.org/10.1007/s10608-023-10411-7
Bucur A-M. Utilizing chatgpt generated data to retrieve depression symptoms from social media. 2023. DOI: https://doi.org/10.1007/978-3-031-71736-9_14
Hashem R, et al. AI to the rescue: Exploring the potential of chatgpt as a teacher ally for workload relief and burnout prevention. Research and Practice in Technology Enhanced Learning. 2024;19:023. DOI: https://doi.org/10.58459/rptel.2024.19023
Gabor-Siatkowska K, et al. AI to train AI: Using chatgpt to improve the accuracy of a therapeutic dialogue system. Electronics. 2023;12(22). DOI: https://doi.org/10.3390/electronics12224694
Levkovich I, Elyoseph Z. Identifying depression and its determinants upon initiating treatment: Chatgpt versus primary care physicians. Family Medicine and Community Health. 2023;11(4). DOI: https://doi.org/10.1136/fmch-2023-002391
Montag C, et al. On artificial intelligence and global mental health. Asian Journal of Psychiatry. 2023;103855. DOI: https://doi.org/10.1016/j.ajp.2023.103855
Dougherty RF, et al. Psilocybin therapy for treatment resistant depression: prediction of clinical outcome by natural language processing. Psychopharmacology. 2023. DOI: https://doi.org/10.1007/s00213-023-06432-5
Bird JJ, Lotfi A. Generative transformer chatbots for mental health support: A study on depression and anxiety. In: Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments, PETRA ’23; 2023 p. 475–479. New York, NY, USA: Association for Computing Machinery. DOI: https://doi.org/10.1145/3594806.3596520
Brooks JA, et al. Emotion expression estimates to measure and improve multimodal social-affective interactions. In: Companion Publication of the 25th International Conference on Multimodal Interaction, ICMI ’23 Companion; 2023 p. 353–358. New York, NY, USA: Association for Computing Machinery. DOI: https://doi.org/10.1145/3610661.3616129
Bokolo Biodoumoye George, Liu Qingzhong. Deep Learning-Based Depression Detection from Social Media: Comparative Evaluation of ML and Transformer Techniques. Electronics. 2023;12(21):4396. Disponível em: https://www.mdpi.com/2079-9292/12/21/4396. DOI: 10.3390/electronics12214396. DOI: https://doi.org/10.3390/electronics12214396
Zhou W, et al. Identifying rare circumstances preceding female firearm suicides: Validating a large language model approach. JMIR Ment Health. 2023;10. DOI: https://doi.org/10.2196/49359
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.