Aprendizagem de Máquina para Classificação de Doenças Respiratórias: Uma Revisão Sistemática
Palabras clave:
Revisão Sistemática, Diagnóstico Precoce, Sons RespiratóriosResumen
Objetivo: O objetivo deste trabalho é apresentar uma análise do estado da arte referente ao problema de classificação de sons respiratórios para auxiliar no diagnóstico e monitoramento da saúde respiratória, destacando os métodos de aprendizagem de máquina. Métodos: Uma revisão da literatura foi conduzida a partir das seguintes palavras-chaves: Machine learning, Classification, Diagnosis, Respiratory sounds, Respiratory disease, Lung sounds e Pulmonary disease. Os banco de dados de pesquisas utilizados foram IEEE Xplore, PubMed e Scopus. Resultados: Ao total 1135 artigos foram coletados, mas apenas 67 atenderam às exigências na primeira etapa de filtro e 14 trabalhos atenderam aos critérios de elegibilidade. Uma taxonomia foi proposta para organizar os trabalhos de acordo com a abordagem de aprendizagem de máquina aplicada. Conclusão: Os resultados obtidos pelo estudo apresentam uma perspectiva geral sobre a problemática, além das contribuições para resolução dos desafios presentes na auscultação tradicional, suas limitações e investigações futuras.Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.