Detecção de Covid-19 em Imagens de Raio-x Utilizando Redes Convolucionais
Palabras clave:
Covid-19, Aprendizado de MáquinaResumen
Objetivo: Este trabalho investiga diferentes abordagens de utilização de redes de convolução (CNNs) para diferenciar Pneumonia causada por Covid-19 de Pneumonia causada por outras doenças, e casos sem Pneumonia. Os dados utilizados são imagens de raio-x. Método: Duas abordagens de treinamento de CNNs são empregadas: CNN sem transferência de aprendizado e CNN treinada com transferência de aprendizado. Além disso, o problema de classificação é tratado em dois cenários: 1) duas classes e 2) três classes. Resultados: A abordagem sem transferência de aprendizado mostrou-se melhor no cenário com duas classes (acurácia 85,37% contra 82.11%), enquanto a segunda abordagem foi ligeiramente superior no cenário 2 (acurácia 87,91% vs 86.26%). Conclusão: Os resultados são interessantes e mostram que o desempenho dos métodos investigados pode variar ao modificarmos o cenário de avaliação, porém, ajustes dos parâmetros são necessários para que as conclusões sejam mais precisas.Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.