Fusão de Dados de Raio-x com Dados Clínicos para Detectar Covid-19
Palavras-chave:
Covid-19, Aprendizagem de MáquinaResumo
Objetivo: Este trabalho investiga o uso de fusão de dados clínicos de pacientes com informações extraídas de imagens de raio-x no contexto de classificação de Covid-19. Método: Duas abordagens de fusão são investigadas: fusão em nível de decisão e fusão em nível de características. Os métodos de classificação utilizados são Redes Neurais Convolucionais (CNN) e algoritmos clássicos de Aprendizagem de Máquina. Resultados: Os experimentos mostram que a fusão de dados melhora o desempenho do sistema em relação ao uso de classificadores individuais. Além disso, mostra-se uma superioridade da fusão em nível de decisão sobre a abordagem de fusão em nível de características. Conclusão: A fusão em nível de decisão balanceou melhor a contribuição de cada grupo de atributos. Esse aspecto precisa ser melhor trabalhado na abordagem de fusão em nível de características.Downloads
Publicado
Como Citar
Edição
Seção
Licença
A submissão de um artigo ao Journal of Health Informatics é entendida como exclusiva e que não está sendo considerada para publicação em outra revista. A permissão dos autores para a publicação de seu artigo no J. Health Inform. implica na exclusiva autorização concedida aos editores para incluí-lo na revista. Ao submeter um artigo, ao autor será solicitada a permissão eletrônica de um Termo de Transferência de Direitos Autorais. Uma mensagem eletrônica será enviada ao autor correspondente confirmando o recibo do manuscrito e o aceite da Declaração de Direito Autoral.