Detecção de Reações Adversas a Medicamentos em pacientes hospitalizados: uma abordagem de análise em rede

Autores

  • Sara Iasmin Vieira Cunha Lima Universidade Federal do Rio Grande do Norte
  • Valdjane Saldanha Universidade Federal do Rio Grande do Norte
  • Ivonete Batista de Araújo Universidade Federal do Rio Grande do Norte
  • Amaxsell Thiago Barros de Souza Universidade Federal do Rio Grande do Norte
  • Vivian Nogueira Silbiger Universidade Federal do Rio Grande do Norte
  • Isabelle Cristina Clemente dos Santos Universidade Federal do Rio Grande do Norte
  • Antonio Gouveia Oliveira Universidade Federal do Rio Grande do Norte
  • Rand Randall Martins Universidade Federal do Rio Grande do Norte

DOI:

https://doi.org/10.59681/2175-4411.v16.2024.1116

Palavras-chave:

Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos, Pacientes Internados, Terapia Medicamentosa, Estudo Observacional

Resumo

Objetivo: Nosso objetivo foi investigar se a análise de redes é capaz de estimar padrões de Reações Adversas a Medicamentos e medicamentos envolvidos. Métodos: Foram incluídos pacientes admitidos a partir de 18 anos de idade ou mais, hospitalizados por mais de 24 horas e que utilizaram pelo menos um medicamento durante a internação. Resultados: Foram observados 8060 pacientes e identificados 358 casos de Reações Adversas a Medicamentos (4,43%). O gráfico de rede mostra que a ocorrência de hipotensão induzida por furosemida, espironolactona e enalapril está relacionada a alterações séricas de potássio e à ocorrência de insuficiência renal. Em torno do nó de náusea e vômito, há uma grande variedade de medicamentos de diferentes classes envolvidos nessa Reação Adversa a Medicamentos, sem outras conexões. Conclusão: A análise de redes é uma estratégia promissora para identificar padrões que correlacionam Reações Adversas a Medicamentos administrados durante a hospitalização.

Biografia do Autor

Sara Iasmin Vieira Cunha Lima, Universidade Federal do Rio Grande do Norte

Post-Graduate in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil.

Valdjane Saldanha, Universidade Federal do Rio Grande do Norte

Post-Graduate in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil.

Ivonete Batista de Araújo, Universidade Federal do Rio Grande do Norte

Professor in the Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, RN, Brazil.

Amaxsell Thiago Barros de Souza, Universidade Federal do Rio Grande do Norte

Graduate in Pharmacy, Federal University of Rio Grande do Norte, Natal, RN, Brazil.

Vivian Nogueira Silbiger, Universidade Federal do Rio Grande do Norte

Professor in the Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, RN, Brazil.

Isabelle Cristina Clemente dos Santos, Universidade Federal do Rio Grande do Norte

Post-Graduate in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil.

Antonio Gouveia Oliveira, Universidade Federal do Rio Grande do Norte

Professor in the Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, RN, Brazil.

Rand Randall Martins, Universidade Federal do Rio Grande do Norte

Professor in the Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, RN, Brazil.

Referências

Pedrós C, Quintana B, Rebolledo M, Porta N, Vallano A, Arnau JM. Prevalence, risk factors and main features of adverse drug reactions leading to hospital admission. Eur J Clin Pharmacol. 2013 Mar;70(3):361-7.

Miguel A, Azevedo LF, Araújo M, Pereira AC. Frequency of adverse drug reactions in hospitalized patients: a systematic review and meta-analysis. Pharmacoepidemiol Drug Saf. 2012 Nov;21(11):1139-54.

Nebeker JR, Barach P, Samore MH. Clarifying adverse drug events: a clinician's guide to terminology, documentation, and reporting. Ann Intern Med. 2004 May 18;140(10):795.

Onder G, Petrovic M, Tangiisuran B, Meinardi MC, Markito-Notenboom WP, Somers A, et al. Development and Validation of a Score to Assess Risk of Adverse Drug Reactions Among In-Hospital Patients 65 Years or Older. Arch Intern Med. 2010 Jul 12;170(13):1142-8.

Klopotowska JE, Wierenga PC, Smorenburg SM, Stuijt CCM, Arisz L, Kuks PFM, et al. Recognition of adverse drug events in older hospitalized medical patients. Eur J Clin Pharmacol. 2012 Jan;69(1):75-85.

Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet. 2000 Oct 14;356(9237):1255-9.

Bastian M, Heymann S, Jacomy M. Gephi: An Open Source Software for Exploring and Manipulating Networks. Proceedings of the International AAAI Conference on Web and Social Media. 2009;3(1):361-2.

World Health Organization. The importance of pharmacovigilance [Internet]. apps.who.int. 2002. Available from: https://apps.who.int/iris/handle/10665/42493.

Griffin F, Resar R. IHI Global Trigger Tool for Measuring Adverse Events. IHI Innovation Series white paper. Cambridge, MA: Institute for Healthcare Improvement, 2009.

Naranjo CA, Busto U, Sellers EM, Sandor P, Ruiz I, Roberts EA, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981;30(2):239-45.

Scott J. Social Network Analysis. Sociology. 1988;22(1):109-127.

Dehmer M, Basak SC. Statistical and Machine Learning Approaches for Network Analysis. John Wiley & Sons: Hoboken, NJ, USA; 2012. ISBN 978-1-118-34698-3.

Cherven K. Mastering Gephi Network Visualization. Packt Publishing Ltd, Birmingham; 2015. 349 pages.

Hu Y. Efficient, high-quality force-directed graph drawing. Math J. 2006;10(1):37-71.

Bultinck J, Lievens S, Tavernier J. Protein-protein interactions: network analysis and applications in drug discovery. Curr Pharm Des. 2012;18(30):4619-29.

Zhao S, Iyengar R. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol. 2012;52:505-21.

Leopoldino RW, Costa HT, Costa TX, et al. Potential drug incompatibilities in the neonatal intensive care unit: a network analysis approach. BMC Pharmacol Toxicol. 2018;19(1):83.

Lehman L, Saeed M, Moody G, et al. Hypotension as a Risk Factor for Acute Kidney Injury in ICU Patients. Comput Cardiol. 2010;37:1095-1098.

Mas-Font S, Ros-Martinez J, Pérez-Calvo C, et al. Prevention of acute kidney injury in Intensive Care Units. Med Intensiva. 2017;41(2):116-126.

Regulski M, Regulska K, Stanisz BJ, et al. Chemistry and Pharmacology of Angiotensin-Converting Enzyme Inhibitors. Curr Pharm Des. 2015;21(13):1764-75.

DiNicolantonio JJ, Lavie CJ, Fares H, et al. Meta-Analysis of Carvedilol Versus Beta 1 Selective Beta-B (Atenolol, Bisoprolol, Metoprolol, and Nebivolol). Am J Cardiol. 2013;111(5):765-9.

Tramadol (2019). In Micromedex (Columbia Basin College Library ed.) [Electronic version]. Greenwood Village, CO: Truven Health Analytics. Available from: https://www.micromedexsolutions.com/micromedex2/librarian/PFDefaultActionId/evidencexpert.DoIntegratedSearch?navitem=headerLogout. Accessed on June 28, 2019.

Donsa K, Beck P, Höll B, et al. Impact of errors in paper-based and computerized diabetes management with decision support for hospitalized patients with type 2 diabetes. A post-hoc analysis of a before and after study. Int J Med Inform. 2016;90:58-67.

Boroumand M, Goodarzynejad H. Monitoring of Anticoagulant Therapy in Heart Disease: Considerations for the Current Assays. J Tehran Heart Cent. 2010;5(2):57-68.

Downloads

Publicado

15-07-2024

Como Citar

Lima, S. I. V. C., Saldanha, V., Araújo, I. B. de, Souza, A. T. B. de, Silbiger, V. N., Santos, I. C. C. dos, … Martins, R. R. (2024). Detecção de Reações Adversas a Medicamentos em pacientes hospitalizados: uma abordagem de análise em rede. Journal of Health Informatics, 16(1). https://doi.org/10.59681/2175-4411.v16.2024.1116

Edição

Seção

Artigo Original

Artigos Semelhantes

1 2 3 4 5 6 7 8 9 10 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)