Classificação automática da doença de Alzheimer através de características extraídas de gravações de fala

Autores

  • Dieine Estela Bernieri Schiavon UFCSPA
  • Carla Diniz Lopes Becker UFCSPA

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1254

Palavras-chave:

Processamento de Fala, Aprendizagem Profunda, Doença de Alzheimer

Resumo

A doença de Alzheimer é uma patologia neurodegenerativa progressiva estando entre as formas mais comuns de demência em pessoas idosas. Alterações de memória são sintomas frequentes, e alterações de fala e linguagem podem ser sinais de declínio cognitivo. Os sistemas inteligentes têm potencial para uso como ferramentas de apoio ao diagnóstico. Objetivo: Propor um modelo de Rede Neural Convolucional para classificação da doença de Alzheimer utilizando características extraídas de gravações de fala. Método: Utilizamos segmentos de fala com e sem pausas de indivíduos saudáveis e com doença de Alzheimer para extrair características e reconhecer padrões em espectrogramas. Para o treinamento do modelo usamos validação cruzada estratificada de 5-folds. Resultados: Obtivemos métricas de acurácia, sensibilidade e especificidade de 97,37%, 97,04% e 97,62%, respectivamente. Conclusão: O modelo proposto apresentou resultados promissores podendo contribuir para o estudo de biomarcadores não invasivos, que detectem precocemente a doença de Alzheimer.

Biografia do Autor

Dieine Estela Bernieri Schiavon, UFCSPA

Master’s Student, Federal University of Health Sciences of Porto Alegre – UFCSPA, Porto Alegre (RS), Brazil.

Carla Diniz Lopes Becker, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Referências

World Health Organization. Dementia [Internet]. World Health Organization. 2023 [cited 2023 Dec 15]. Available from: https://www.who.int/news-room/fact-sheets/detail/dementia.

Guo Y, Li C, Roan C, Pakhomov S, Cohen T. Crossing the “Cookie Theft” Corpus Chasm: Applying What BERT Learns From Outside Data to the ADReSS Challenge Dementia Detection Task. Frontiers in Computer Science. 2021 Apr 16. DOI: https://doi.org/10.3389/fcomp.2021.642517

Yang A, Liu C, Wu J, Kou X, Shen R. A review on α-mangostin as a potential multi-targetdirected ligand for Alzheimer’s disease. European Journal of Pharmacology 2021 Ap;897:173950. DOI: https://doi.org/10.1016/j.ejphar.2021.173950

Mahajan P, Baths V. Acoustic and Language Based Deep Learning Approaches for Alzheimer’s Dementia Detection From Spontaneous Speech. Frontiers in Aging Neuroscience 2021 Feb 5; 13. DOI: https://doi.org/10.3389/fnagi.2021.623607

Haulcy R, Glass J. Classifying Alzheimer’s Disease Using Audio and Text-Based Representations of Speech. Frontiers in Psychology [Internet]. 2021 Jan 15 [cited 2023 Dec 15];11. Available from: https://www.frontiersin.org/articles/10.3389/fpsyg.2020.624137. DOI: https://doi.org/10.3389/fpsyg.2020.624137

Chlasta K, Wołk K. Towards Computer-Based Automated Screening of Dementia Through Spontaneous Speech. Frontiers in Psychology [Internet]. 2021 Feb 12 [cited 2023 Dec 15];11. Available from: https://www.frontiersin.org/articles/10.3389/fpsyg.2020.623237. DOI: https://doi.org/10.3389/fpsyg.2020.623237

Laguarta J, Subirana B. Longitudinal Speech Biomarkers for Automated Alzheimer’s Detection. Frontiers in Computer Science [Internet]. 2021 Apr 8 [cited 2023 Dec 15];3. Available from: https://www.frontiersin.org/articles/10.3389/fcomp.2021.624694. DOI: https://doi.org/10.3389/fcomp.2021.624694

de la Fuente Garcia S, Ritchie CW, Luz S. Artificial Intelligence, Speech, and Language Processing Approaches to Monitoring Alzheimer’s Disease: A Systematic Review. Journal of Alzheimer’s Disease. 2020 Dec 8; 78(4):1547–74. DOI: https://doi.org/10.3233/JAD-200888

Yuan J, Cai X, Bian Y, Ye Z, Church K. Pauses for Detection of Alzheimer’s Disease. Frontiers in Computer Science [Internet]. 2021 Jan 29 [cited 2023 Dec 15];2. Available from: https://www.frontiersin.org/articles/10.3389/fcomp.2020.624488. DOI: https://doi.org/10.3389/fcomp.2020.624488

Alkenani AH, Li Y, Xu Y, Zhang Q. Predicting Prodromal Dementia Using Linguistic Patterns and Deficits. IEEE Access [Internet]. 2020 [cited 2023 Dec 15]; 8:193856–73. Available from: https://ieeexplore.ieee.org/abstract/document/9218925. DOI: https://doi.org/10.1109/ACCESS.2020.3029907

Pompili A, Abad A, de Matos DM, Martins IP. Pragmatic Aspects of Discourse Production for the Automatic Identification of Alzheimer’s Disease. IEEE Journal of Selected Topics in Signal Processing [Internet]. 2020 Feb 1;14(2):261–71. Available from: https://ieeexplore.ieee.org/document/8963723. DOI: https://doi.org/10.1109/JSTSP.2020.2967879

Liu Z, Guo Z, Ling Z, Li Y. Detecting Alzheimer’s Disease from Speech Using Neural Networks with Bottleneck Features and Data Augmentation [Internet]. IEEE Xplore. 2021. p. 7323–7. Available from: https://ieeexplore.ieee.org/document/9413566. DOI: https://doi.org/10.1109/ICASSP39728.2021.9413566

Gónzalez Atienza M, González López JA, Peinado AM. An Automatic System for Dementia Detection using Acoustic and Linguistic Features. digibugugres [Internet]. 2021 Jan 28; Available from: https://digibug.ugr.es/handle/10481/66645.

Bernieri G, Duarte JC. Identifying Alzheimer’s Disease Through Speech Using Emotion Recognition. Journal of Health Informatics [Internet]. 2023 Jul 20 [cited 2023 Dec 23];15(Especial). Available from: https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/1093. DOI: https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1093

Becker JT. The Natural History of Alzheimer’s Disease. Archives of Neurology. 1994 Jun 1;51(6):585. DOI: https://doi.org/10.1001/archneur.1994.00540180063015

Luz S, Haider F, de la Fuente S, Fromm D, MacWhinney B. Alzheimer’s Dementia Recognition through Spontaneous Speech: The ADReSS Challenge. arXiv:200406833 [cs, eess, stat] [Internet]. 2020 Aug 5 [cited 2023 Dec 15]; Available from: https://arxiv.org/abs/2004.06833. DOI: https://doi.org/10.21437/Interspeech.2020-2571

Luz S, Haider F, de la Fuente Garcia S, Fromm D, MacWhinney B. Editorial: Alzheimer’s Dementia Recognition through Spontaneous Speech. Frontiers in Computer Science [Internet]. 2021 Oct 21 [cited 2023 Dec 12];3. Available from: https://www.frontiersin.org/articles/10.3389/fcomp.2021.780169. DOI: https://doi.org/10.3389/fcomp.2021.780169

Goodglass H, Kaplan E, Weintraub S. BDAE: The Boston Diagnostic Aphasia Examination. Philadelphia, PA: Lippincott Williams & Wilkins; 2001. 2001.

Luz S, Haider F, de la Fuente S, Fromm D, MacWhinney B. Detecting cognitive decline using speech only: The ADReSSo Challenge. arXiv:210409356 [cs, eess] [Internet]. 2021 Mar 22 [cited 2023 Dec 23]; Available from: https://arxiv.org/abs/2104.09356. DOI: https://doi.org/10.1101/2021.03.24.21254263

Sainburg T. timsainb/noisereduce: v1.0. zenodoorg [Internet]. 2019 Jun 11 [cited 2023 Dec 23]; Available from: https://zenodo.org/record/3243139.

Steinmetz CJ, Reiss J. pyloudnorm: A simple yet flexible loudness meter in Python [Internet]. Audio Engineering Society Convention 150. Audio Engineering Society; 2021 [cited 2023 Dec 23]. Available from: https://csteinmetz1.github.io/pyloudnorm-eval/paper/pyloudnorm_preprint.pdf.

McFee B, Metsai A, McVicar M, Balke S, Thomé C, Raffel C, et al. librosa/librosa: 0.9.2 [Internet]. Zenodo. 2022. Available from: https://zenodo.org/record/6759664#.Y6n8x-zMK00.

Tan M, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks [Internet]. proceedings.mlr.press. PMLR; 2019 [cited 2023 Dec 23]. p. 6105–14. Available from: https://proceedings.mlr.press/v97/tan19a.html?ref=jina-ai-gmbh.ghost.io.

Team K. Keras documentation: Keras Applications [Internet]. keras.io. [cited 2023 Dec 23]. Available from: https://keras.io/api/applications.

Tammina S. Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images. International Journal of Scientific and Research Publications Volume 9, Issue 10, ISSN 2250-3153; 2019. DOI: https://doi.org/10.29322/IJSRP.9.10.2019.p9420

Downloads

Publicado

19-11-2024

Como Citar

Schiavon, D. E. B., & Becker, C. D. L. (2024). Classificação automática da doença de Alzheimer através de características extraídas de gravações de fala. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1254

Artigos Semelhantes

<< < 3 4 5 6 7 8 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)