Inteligência artificial para diagnóstico e encaminhamento de catarata usando dados reais

Autores

DOI:

https://doi.org/10.59681/2175-4411.v17.2025.1441

Palavras-chave:

Inteligência Artificial, Diagnóstico, Catarata

Resumo

O uso de inteligência artificial (IA) para aplicações oftalmológicas têm mostrado resultados promissores, entretanto, seu desempenho depende do grupo populacional amostrado e precisa ser avaliado em cenários reais. Propomos o uso de IA para diagnóstico de catarata e encaminhamento para especialista usando uma base de dados real, composta por 2642 imagens oculares, de um serviço de telemedicina no sul do Brasil. Nossa solução adota um modelo composto para aprimorar o desempenho dos classificadores. Os melhores resultados mostram acurácia de 90,6% para diagnóstico, com área correspondente sob a curva de operação característica do receptor (ROC AUC) de 96,7%. A acurácia para encaminhamento de catarata para cirurgia foi de 86,5%, com ROC AUC de 94,3%. Os dados obtidos apontam que o uso de um modelo composto treinado com uma base clínica heterogênea real permitiu que nossa solução atingisse desempenho superior a outros trabalhos da literatura quando avaliados com dados do mundo real.

Downloads

Não há dados estatísticos.

Biografia do Autor

Marcelo Negreiros, Universidade Federal do Rio Grande do Sul

Pesquisador do Instituto de Inovação em Sistemas de Sensoriamento (ISI-SIM) do SENAI, São Leopoldo, Brasil. Foi pesquisador associado da UFRGS, Porto Alegre, Brasil, durante o desenvolvimento deste trabalho.

Ronaldo Husemann, Universidade Federal do Rio Grande do Sul

Professor adjunto do Departamento de Engenharia Elétrica da UFRGS, Porto Alegre, Brasil.

Valter Roesler, Universidade Federal do Rio Grande do Sul

Professor associado do Instituto de Informática da UFRGS, Brasil.

Aline L. de Araujo, Universidade Federal do Rio Grande do Sul

Pesquisadora do Teleoftalmo TelessaúdeRS-UFRGS, Brasil.

Dimitris Rucks Varvaki Rados , Universidade Federal do Rio Grande do Sul

Professor de Medicina Interna na UFRGS, Brasil.

Felipe C. Cabral, Hospital Moinhos de Vento

Pesquisador do Hospital Moinhos de Vento, Rio Grande do Sul, Brasil.

Natan Katz , Universidade Federal do Rio Grande do Sul

Professor de Medicina de Família da UFRGS.

Referências

Gutierrez L, Lim JS, Foo LL, Ng WY, Yip M, Lim GYS, et al. Application of artificial intelligence in cataract management: current and future directions. Eye Vis. 2022;9(1):1–11. DOI: https://doi.org/10.1186/s40662-021-00273-z

Gunasekeran DV, Wong TY. Artificial intelligence in ophthalmology in 2020: A technology on the cusp for translation and implementation. Asia-Pacific J Ophthalmol. 2020;9(2):61–6. DOI: https://doi.org/10.1097/01.APO.0000656984.56467.2c

Ting DSJ, Foo VHX, Yang LWY, Sia JT, Ang M, Lin H, et al. Artificial intelligence for anterior segment diseases: Emerging applications in ophthalmology. British Journal of Ophthalmology. 2021. DOI: https://doi.org/10.1136/bjophthalmol-2019-315651

Lin H, Liu L, Wu X., Artificial Intelligence for Cataract Management. Artificial Intelligence in Ophthalmology. 2021:203–6. DOI: https://doi.org/10.1007/978-3-030-78601-4_16

Tong Y, Lu W, Yu Y, Shen Y. Application of machine learning in ophthalmic imaging modalities. Eye Vis. 2020;7(1). DOI: https://doi.org/10.1186/s40662-020-00183-6

Zhang XQ, Hu Y, Xiao, ZJ, Fang JS, Higashita R, Liu J, Machine learning for cataract classification/grading on ophthalmic imaging modalities: A survey. Mach. Intell. Res. 2022;19(3):184–208. DOI: https://doi.org/10.1007/s11633-022-1329-0

Orfao J, van der Haar D. A Comparison of Computer Vision Methods for the Combined Detection of Glaucoma, Diabetic Retinopathy and Cataracts. In: Lecture Notes in Computer Science. 2021. DOI: https://doi.org/10.1007/978-3-030-80432-9_3

Alam M, Hallak JA. AI-automated referral for patients with visual impairment. Lancet Digit Heal [Internet]. 2021;3(1):e2–3 DOI: https://doi.org/10.1016/S2589-7500(20)30286-7

Wu X, Xu D, Ma T, Li ZH, Ye Z, Wang F, et al. Artificial Intelligence Model for Antiinterference Cataract Automatic Diagnosis: A Diagnostic Accuracy Study. Front Cell Dev Biol. 2022;10(July):1–11. DOI: https://doi.org/10.3389/fcell.2022.906042

Wu X, Huang Y, Liu Z, Lai W, Long E, Zhang K, et al. Universal artificial intelligence platform for collaborative management of cataracts. British Journal of Ophthalmology. 2019;103(11):1553–60. DOI: https://doi.org/10.1136/bjophthalmol-2019-314729

Pratap T, Dhulipalla VR, Kokil P. Computer-aided Cataract Diagnosis with Fundus Retinal Images under Noisy Conditions. IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI) 2024:1–18. DOI: https://doi.org/10.1109/IATMSI60426.2024.10502479

Kassoff A, Kassoff J, Mehu M, Buehler JA, Eglow M, Kaufman F, et al. The Age-Related Eye Disease Study (AREDS) system for classifying cataracts from photographs: AREDS Report No. 4. Am J Ophthalmol. 2001;131(2):167–75. DOI: https://doi.org/10.1016/S0002-9394(00)00732-7

Maaliw RR, Alon AS, Lagman AC, Garcia MB, Abante MV, Belleza RC, et al.. Cataract Detection and Grading Using Ensemble Neural Networks and Transfer Learning. IEEE Annual Information Technology, Electronics and Mobile Communication Conference. 2022:1-9. DOI: https://doi.org/10.1109/IEMCON56893.2022.9946550

Tham YC, Anees A, Zhang L, Goh JHL, Rim TH, Nusinovici S, et al. Referral for disease-related visual impairment using retinal photograph-based deep learning: a proof-of-concept, model development study. Lancet Digit Heal [Internet]. 2021;3(1):e29–40. DOI: https://doi.org/10.1016/S2589-7500(20)30271-5

Jiang L, Huang D, Liu M, Yang W. Beyond Synthetic Noise: Deep Learning on Controlled Noisy Labels. In: 37th International Conference on Machine Learning, ICML 2020. 2020.

Yahata E, Winnikow EP, Suyama R, Simoes PW. Explainability in Machine Learning Predictive Models in Breast Cancer. Journal of Health Informatics, 2022;15(Especial). DOI: https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1090

Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006;27(8):861–74. DOI: https://doi.org/10.1016/j.patrec.2005.10.010

Chauhan K, Kashish, Dagar K, Yadav RK. Cataract detection from eye fundus image using an ensemble of transfer learning models. Intern Conference on Advance Computing and Innovative Technologies in Engineering. 2022:2194-98. DOI: https://doi.org/10.1109/ICACITE53722.2022.9823638

Chollet F. Deep Learning with Python Manning. 2018.

Gao X, Wong DWK, Ng TT, Cheung CYL, Cheng CY, Wong TY. Automatic grading of cortical and PSC cataracts using retroillumination lens images. Lect Notes Comput Sci . 2013;7725 LNCS(PART 2):256–67. DOI: https://doi.org/10.1007/978-3-642-37444-9_20

de Araujo AL, Moreira TC, Rados DRV, Gross PB, Bastos CGM, Katz N, et al. The use of telemedicine to support Brazilian primary care physicians in managing eye conditions: The Teleoftalmo project. PLoS One. 2020;15(4):1–12. DOI: https://doi.org/10.1371/journal.pone.0231034

Carneiro T, Da Nobrega RVM, Nepomuceno T, Bian G Bin, De Albuquerque VHC, Filho PPR. Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications. IEEE Access. 2018;6:61677–85. DOI: https://doi.org/10.1109/ACCESS.2018.2874767

Ramlan LA, Zaki WMDW, Mutalib HÁ, Hussain A, Mustapha A. Cataract Detection using Pupil Patch Classification and Ruled-based System in Anterior Segment Photographed Images. Symposium on Computer Applications & Industrial Electronics. 2023: 124-9. DOI: https://doi.org/10.1109/ISCAIE57739.2023.10165004

Kaur N, Gupta G. Cataract Disease Diagnosis Using SURF Features and Pre-Trained Variants of an EfficientNet Model: Comparative Analysis. Inter Conf Comp, Autom and Know Manag (ICCAKM) 2023:1-6. DOI: https://doi.org/10.1109/ICCAKM58659.2023.10449495

Shimizu, E, Tanji M, Nakayama S, Ishikawa T, Agata N, Yokoiwa R , Nishimura H, et al. AI-based diagnosis of nuclear cataract from slit-lamp videos. Sci Rep 13, 22046 (2023). DOI: https://doi.org/10.1038/s41598-023-49563-7

Fotografia mostra médica oftalmologista examinando uma paciente. Fotografia cedida pelo Hospital Moinhos de Vento.

Publicado

31-10-2025

Como Citar

Negreiros, M., Husemann, R., Roesler, V., Araujo, A. L. de, Rados , D. R. V., Cabral, F. C., & Katz , N. (2025). Inteligência artificial para diagnóstico e encaminhamento de catarata usando dados reais. Journal of Health Informatics, 17(1), 1441. https://doi.org/10.59681/2175-4411.v17.2025.1441

Edição

Seção

Artigo Original

Artigos Semelhantes

1 2 3 4 5 6 7 8 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.