Medical time series classification using global and local feature extraction strategies

Autores

  • André Gustavo Maletzke Universidade de São Paulo
  • Carlos Andres Ferrero Instituto Federal de Santa Catarina IFSC, Campus Lages
  • Chris Mayara Tibes Escola de Enfermagem de Ribeirão Preto – EERP/USP
  • Everton Alvares Cherman
  • Willian Zalewski Universidade Federal da Integração Latino-Americana - UNILA

Palavras-chave:

Artifical Intelligence, Electrocardiography, Electroencephalography

Resumo

Objective: Present a method to improve the accuracy of the time series classification task, as well as to enable the interpretation of its generated model. Method: Features were extracted from time series combining two strategies: the global strategy, which uses statistical and complexity descriptors; and the local strategy, which uses the motif representation. In the next step, the data was submitted to three different learning algorithms in order to create classification models. The performances of the models were evaluated in terms of mean error rate using five medical datasets. Results: fFr all datasets, the best classification accuracy was obtained combining both local and global strategies. The approach improved the performance of the J48 algorithm, which generates a more interpretative model. The comparison among 1-NN, MLP, and J48 shows no significant statistically difference. Conclusion: The method aims at an enhanced descriptive power for time series data and increasing the performance of the models.

Biografia do Autor

André Gustavo Maletzke, Universidade de São Paulo

Doutorando em Ciências de Computação e Matemática Computacional pelo Instituto de Ciências Matemáticas e de Computação – ICMC/USP

Carlos Andres Ferrero, Instituto Federal de Santa Catarina IFSC, Campus Lages

Doutorando pelo Programa de Ciência da Computação, Departamento de Informática e Estatística, Universidade Federal de Santa Catarina – UFSC, Florianópolis (SC), Brasil

Chris Mayara Tibes, Escola de Enfermagem de Ribeirão Preto – EERP/USP

Doutoranda em Enfermagem Fundamental pela Escola de Enfermagem de Ribeirão Preto – EERP/USP

Everton Alvares Cherman

Doutor pelo Instituto de Ciências Matemáticas e de Computação – ICMC / USP

Willian Zalewski, Universidade Federal da Integração Latino-Americana - UNILA

Professor do Departamento de Informática, Universidade Tecnológica Federal do Paraná – UTFPR, Pato Branco (PR), Brasil

Downloads

Publicado

16-08-2017

Como Citar

Maletzke, A. G., Ferrero, C. A., Tibes, C. M., Cherman, E. A., & Zalewski, W. (2017). Medical time series classification using global and local feature extraction strategies. Journal of Health Informatics, 9(3). Recuperado de https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/474

Edição

Seção

Artigo Original

Artigos Semelhantes

1 2 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)