Medical time series classification using global and local feature extraction strategies
Palabras clave:
Artifical Intelligence, Electrocardiography, ElectroencephalographyResumen
Objective: Present a method to improve the accuracy of the time series classification task, as well as to enable the interpretation of its generated model. Method: Features were extracted from time series combining two strategies: the global strategy, which uses statistical and complexity descriptors; and the local strategy, which uses the motif representation. In the next step, the data was submitted to three different learning algorithms in order to create classification models. The performances of the models were evaluated in terms of mean error rate using five medical datasets. Results: fFr all datasets, the best classification accuracy was obtained combining both local and global strategies. The approach improved the performance of the J48 algorithm, which generates a more interpretative model. The comparison among 1-NN, MLP, and J48 shows no significant statistically difference. Conclusion: The method aims at an enhanced descriptive power for time series data and increasing the performance of the models.Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.