Fusão de Dados de Raio-x com Dados Clínicos para Detectar Covid-19

Autores/as

  • Gabriel Alves Saraiva SBIS
  • Alberto de Almeida Campos Gonçalves
  • Rafael Albuquerque Pinto
  • Eduardo Souto
  • Eulanda Miranda dos Santos

Palabras clave:

Covid-19, Aprendizagem de Máquina

Resumen

Objetivo: Este trabalho investiga o uso de fusão de dados clínicos de pacientes com informações extraídas de imagens de raio-x no contexto de classificação de Covid-19. Método: Duas abordagens de fusão são investigadas: fusão em nível de decisão e fusão em nível de características. Os métodos de classificação utilizados são Redes Neurais Convolucionais (CNN) e algoritmos clássicos de Aprendizagem de Máquina. Resultados: Os experimentos mostram que a fusão de dados melhora o desempenho do sistema em relação ao uso de classificadores individuais. Além disso, mostra-se uma superioridade da fusão em nível de decisão sobre a abordagem de fusão em nível de características. Conclusão: A fusão em nível de decisão balanceou melhor a contribuição de cada grupo de atributos. Esse aspecto precisa ser melhor trabalhado na abordagem de fusão em nível de características.

Descargas

Los datos de descargas todavía no están disponibles.

Publicado

2021-03-15

Cómo citar

Saraiva, G. A., Gonçalves, A. de A. C., Pinto, R. A., Souto, E., & Santos, E. M. dos. (2021). Fusão de Dados de Raio-x com Dados Clínicos para Detectar Covid-19. Journal of Health Informatics, 12. Recuperado a partir de https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/834

Artículos similares

1 2 3 4 5 6 7 8 9 > >> 

También puede {advancedSearchLink} para este artículo.

Artículos más leídos del mismo autor/a