Artificial intelligence and maternal health: the Caren experience in Goiás

Authors

  • Matheus Saraiva Alcino Secretaria de Estado de Saúde
  • Pedro Manuel Rodrigues Secretaria de Estado de Saúde
  • Wanderson da Silva Marques Secretaria de Estado de Saúde
  • Carlos Augusto Gonçalves Tibiriça Secretaria de Estado de Saúde
  • Willian Farias Carvalho Oliveira Secretaria de Estado de Saúde
  • Diogo Antônio Leal Secretaria de Estado de Saúde

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1271

Keywords:

Optimization of Neonatal Care, Artificial Intelligence in Maternal Health, Caren

Abstract

Objective: The Caren application aims to enhance neonatal care management in public hospitals in Goiás, using artificial intelligence to predict levels of medical attention for newborns. Method: The application employs a supervised predictive model, trained with data from the Unified Health System, using integration and undersampling techniques to deal with imbalance. Results: The results show that the chosen model, prioritizing recall, demonstrated effectiveness, highlighting a conservative approach. Temporal analysis indicates the need for caution in predictions after the first day of life. Conclusion: Caren is an innovative tool for efficient management of neonatal resources, signaling advances in maternal health.

Author Biographies

Matheus Saraiva Alcino, Secretaria de Estado de Saúde

Cientista de dados, Gerência de Inovação, Secretaria de Estado de Saúde, Goiânia (GO), Brasil.

Pedro Manuel Rodrigues, Secretaria de Estado de Saúde

Cientista de dados, Gerência de Inovação, Secretaria de Estado de Saúde, Goiânia (GO), Brasil.

Wanderson da Silva Marques, Secretaria de Estado de Saúde

Cientista de dados, Gerência de Inovação, Secretaria de Estado de Saúde, Goiânia (GO), Brasil.

Carlos Augusto Gonçalves Tibiriça, Secretaria de Estado de Saúde

Cientista de dados, Gerência de Inovação, Secretaria de Estado de Saúde, Goiânia (GO), Brasil.

Willian Farias Carvalho Oliveira, Secretaria de Estado de Saúde

Cientista de dados, Gerência de Inovação, Secretaria de Estado de Saúde, Goiânia (GO), Brasil.

Diogo Antônio Leal, Secretaria de Estado de Saúde

Cientista de dados, Gerência de Inovação, Secretaria de Estado de Saúde, Goiânia (GO), Brasil.

References

Brasil. Ministério da Saúde. DATASUS. Tabnet. Brasília, DF: Ministério da Saúde; 2022. Disponível em: https://datasus.saude.gov.br/informacoes-de-saude-tabnet/. Acesso em: janeiro de 2022.

Chawla, N, Bowyer, K, Hall, L, Kegelmeyer, W. "SMOTE: synthetic minority over-sampling technique". Journal of artificial intelligence research 2002; 16:321–357.

Cnattingius, S, Johansson, S, Razaz, N. "Apgar score and risk of neonatal death among preterm infants". New England Journal of Medicine 2020; 383(1):49–57.

Gudmann, A, Mucsi, L. "Pixel and object-based land cover mapping and change detection from 1986 to 2020 for Hungary using histogram-based gradient boosting classification tree classifier". Geographica Pannonica 2022; 26(3).

Haran, C, Van Driel, M, Mitchell, B, Brodribb, W. "Clinical guidelines for postpartum women and infants in primary care–a systematic review". BMC pregnancy and childbirth 2014; 14:1–9..

Lubchenco, L, Hansman, C, Dressler, M, Boyd, E. "Intrauterine growth as estimated from liveborn birth-weight data at 24 to 42 weeks of gestation". Pediatrics 1963; 32(5):793–800.

Moller, AB, Newby, H, Hanson, C, Morgan, A, El Arifeen, S, Chou, D, Diaz, T, Say, L, Askew, I, Moran, A. "Measures matter: a scoping review of maternal and newborn indicators". PloS one 2018; 13(10)..

Nussbaum, C, Lengauer, M, Puchwein-Schwepcke, A, Weiss, V, Spielberger, B, Genzel-Boroviczeny, O. "Noninvasive Ventilation in Preterm Infants: Factors Influencing Weaning Decisions and the Role of the Silverman-Andersen Score". Children 2022; 9(9):1292.

Pedregosa, F, Varoquaux, G, Gramfort, A, Michel, V, Thirion, B, Grisel, O, Blondel, M, Prettenhofer, P, Weiss, R, Dubourg, V, Vanderplas, J, Passos, A, Cournapeau, D, Brucher, M, Perrot, M, Duchesnay, E. "Scikit-learn: Machine Learning in Python". Journal of Machine Learning Research 2011; 12:2825–2830.

Preston, S, Heuveline, P, Guillot, M. Demography: Measuring and Modeling Population Processes. Wiley; 2000.

Winkler, W. "Matching and record linkage". Wiley interdisciplinary reviews: Computational statistics 2014; 6(5):313–325.

Published

2024-11-19

How to Cite

Alcino, M. S., Rodrigues, P. M., Marques, W. da S., Tibiriça, C. A. G., Oliveira, W. F. C., & Leal, D. A. (2024). Artificial intelligence and maternal health: the Caren experience in Goiás. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1271

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)