Large language model to generate synthetic electronic medical records

Authors

  • Gabriel Constantin da Silva UFCSPA
  • Silvio César Cazella UFCSPA

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1275

Keywords:

Open Science, Large Language Model, Electronic Health Records

Abstract

Introduction: The use of health data in research is limited by ethical issues. This challenges researchers to find ways to obtain the necessary material to carry out their work. Method: A Large Language Model (LLM) tool was used to generate synthetic electronic health records (EHR) for cardiology patients, employing the techniques of "few-shot prompting" and "chain-of-thought prompting". Objectives: Create a comprehensive and accessible dataset to aid in training text classification algorithms in medical scenarios. Results: 103 synthetic EHR were generated, covering different cardiac diagnoses. Conclusion: The generation of synthetic EHR through LLM presented the expected quality, being consistent with the content found in real EHR. The dataset is available in the Zenodo repository for unrestricted use by the research community, following the concept of open science.

Author Biographies

Gabriel Constantin da Silva, UFCSPA

Mestrando, PPGTIG Saúde, UFCSPA, Porto Alegre (RS), Brasil.

Silvio César Cazella, UFCSPA

Professor Doutor, PPGTIG Saúde, UFCSPA, Porto Alegre (RS), Brasil.

References

Bozkurt M, Harman M. Automatically generating realistic test input from web services. In: Service Oriented System Engineering (SOSE), IEEE 6th International Symposium; 2011.

Rubin D. Discussion: Statistical disclosure limitation. J Off Stat. 1993;9(2):461-8.

Van Panhuis WG, Paul P, Emerson C, Grefenstette J, Wilder R, Herbst AJ, Burke DS. A systematic review of barriers to data sharing in public health. BMC Public Health. 2014;14:1-9.

Weston J, Bordes A, Chopra S, Rush A, Merrienboer B, Joulin A, Mikolov T. Towards AI-complete question answering: A set of prerequisite toy tasks.

Gargiulo F, Ternes S, Huet S, Deffuant G. An iterative approach for generating statistically realistic populations of households. PLoS ONE. 2010;5(1).

Eigenschink P, Reutterer T, Vamosi S, Vamosi R, Sun C, Kalcher K. Deep Generative Models for Synthetic Sequential Data: A Survey. IEEE Access. 2023.

Ahmad A, Waseem M, Liang P, Fahmideh M, Aktar MS, Mikkonen T. Towards human-bot collaborative software architecting with chatgpt. In: Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering; 2023. p. 279-85.

Wang J, Liu Z, Zhao L, Wu Z, Ma C, Yu S, Zhang S. Review of large vision models and visual prompt engineering. Meta-Radiol. 2023;100047.

Meskó B. Prompt engineering as an important emerging skill for medical professionals: tutorial. J Med Internet Res. 2023;25:e50638.

Hassani H, Silva ES. The Role of ChatGPT in Data Science: How AI-Assisted Conversational Interfaces Are Revolutionizing the Field. Big Data Cogn Comput. 2023;7(2):62. [doi.org]10.3390/bdcc7020062.

Janik R. Aspects of human memory and Large Language Models. ArXiv [Preprint]. 2023:abs/2311.03839.

Heston TF, Khun C. Prompt engineering in medical education. Int Med Educ. 2023;2(3):198-205.

Cawsey AJ, Webber BL, Jones RB. Natural language generation in health care. J Am Med Inform Assoc. 1997;4(6):473-482. doi:10.1136/jamia.1997.0040473.

Shickel B, Tighe P, Bihorac A, Rashidi P. Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J Biomed Health Inform. 2018;22(5):1589-604.

Chen, R. J., Lu, M. Y., Chen, T. Y., Williamson, D. F., & Mahmood, F. (2021). Synthetic data in machine learning for medicine and healthcare. Nature Biomedical Engineering, 5(6), 493-497.

Clarke LA. A system to generate test data and symbolically execute programs. IEEE Trans Softw Eng. 1976;SE-2(3):215-222.

Wei J, Wang X, Schuurmans D, Bosma M, Xia F, Chi E, Zhou D. Chain-of-thought prompting elicits reasoning in large language models. Adv Neural Inf Process Syst. 2022;35:24824-37.

Shao Z, Gong Y, Shen Y, Huang M, Duan N, Chen W. Synthetic prompting: Generating chain-of-thought demonstrations for large language models. In: International Conference on Machine Learning. PMLR; 2023 Jul. p. 30706-75.

Li, J., Cheng, X., Zhao, W., Nie, J., & Wen, J. HaluEval: A Large-Scale Hallucination Evaluation Benchmark for Large Language Models. ArXiv. 2023;abs/2305.11747. https://doi.org/10.48550/arXiv.2305.11747.

Choi E, Biswal S, Malin B, Duke J, Stewart WF, Sun J. Generating multi-label discrete patient records using generative adversarial networks. ArXiv [Preprint]. 2017:1703.06490.

Scott McLachlan, Kudakwashe Dube, and Thomas Gallagher. Using the caremap with health incidents statistics for generating the realistic synthetic electronic ealthcare record. In Healthcare Informatics (ICHI), 2016 IEEE International Conference on, pages 439–448. IEEE, 2016.

Lombardo JS, Moniz LJ. A method for generation and distribution of synthetic medical record data for evaluation of disease-monitoring systems. Johns Hopkins APL Tech Dig. 2008;27(4):356.

Esteban C, Hyland SL, Rätsch G. Real-valued (medical) time series generation with recurrent conditional GANs. arXiv preprint arXiv:1706.02633. 2017.

Strasser A. On pitfalls (and advantages) of sophisticated large language models. ArXiv [Internet]. 2023 Mar [citado 2024 Mar 27]; abs/2303.17511. Disponível em: https://doi.org/10.48550/arXiv.2303.17511

Luo J, Xiao C, Ma F. Zero-Resource Hallucination Prevention for Large Language Models. ArXiv. 2023;abs/2309.02654. https://doi.org/10.48550/arXiv.2309.02654.

Baowaly MK, Lin C-C, Liu C-L, Chen KT. Synthesizing electronic health records using improved generative adversarial networks. J Am Med Inform Assoc. 2019;26(3):228-241.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Polosukhin I. Attention is all you need. Adv Neural Inf Process Syst. 2017;30.

Wiggers K. OpenAI's attempts to watermark AI text hit limits. TechCrunch. 2022 Dec 10. Disponível em: https://techcrunch.com/2022/12/10/openais-attempts-to-watermark-ai-text-hit-limits

Kumar UL, Pal A, Sankarasubbu M. Med-HALT: Medical Domain Hallucination Test for Large Language Models. In: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP); 2023:314-334. https://doi.org/10.48550/arXiv.2307.15343.

Coda-Forno J, Binz M, Akata Z, Botvinick M, Wang JX, Schulz E. Meta-in-context learning in large language models. ArXiv abs/2305.12907 [Internet]. 2023 [cited 2024 Apr 07]. Available from: doi: 10.48550/arXiv.2305.12907.

Published

2024-11-19

How to Cite

da Silva, G. C., & Cazella, S. C. (2024). Large language model to generate synthetic electronic medical records. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1275

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)