Arbovirus case prediction in Recife using reservoir computing
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1298Keywords:
Reservoir computing, Forecasting Model, Arbovirus ForecastingAbstract
Objective: Due to the complexity of diagnosing arboviruses, machine learning prediction aims to anticipate outbreaks, speed up treatment and reduce spread. Method: This study proposes applying reservoir computing techniques, incorporating climatic factors, to predict outbreaks and increases in the incidence of these diseases. Results: The models created had values greater than 0.80 for accuracy, precision and recall in predicting cases in Recife, Pernambuco. Conclusion: These models are crucial for decision-making, enabling more effective preventive and control interventions against arboviruses in public health.
References
SINARE, Akshata B.; BARKADE, Ganesh D. Dengue: A mosquito borne disease. World Journal of Biology Pharmacy and Health Sciences, v. 14, n. 2, p. 251-261, 2023.
PARIJA, Subhash Chandra. Arboviruses (Arthropod-borne Viruses) and Rodent-borne Viruses. In: Textbook of Microbiology and Immunology. Singapore: Springer Nature Singapore, 2023. p. 825-846.
VAZIRI, Samira; POUR, Siavash Hamzeh; AKRAMI-MOHAJERI, Fateme. Zika virus as an emerging arbovirus of international public health concern. Osong Public Health and Research Perspectives, v. 13, n. 5, p. 341, 2022.
OEHLER, Erwan et al. Increase in cases of Guillain-Barré syndrome during a Chikungunya outbreak, French Polynesia, 2014 to 2015. Eurosurveillance, v. 20, n. 48, p. 30079, 2015.
FARIA, Marco Túlio da Silva et al. Saúde e saneamento: uma avaliação das políticas públicas de prevenção, controle e contingência das arboviroses no Brasil. Ciência & Saúde Coletiva, v. 28, p. 1767-1776, 2023.
ESPINAL, Marcos A. et al. Emerging and reemerging Aedes-transmitted arbovirus infections in the region of the Americas: implications for health policy. American journal of public health, v. 109, n. 3, p. 387-392, 2019.
PÉREZ, Tatiana Betancur et al. Covid-19 and Dengue Coinfection: Case Report. Japan Journal of Clinical & Medical Research, v. 1, n. 3, p. 1-2, 2021.
MARDEKIAN, Stacey K. et al. Diagnostic options and challenges for dengue and chikungunya viruses. BioMed research international, v. 2015, 2015.
VALERIO, Fernanda et al. The neurological sequelae of pandemics and epidemics. Journal of Neurology, v. 268, n. 8, p. 2629-2655, 2021.
DA SILVA, Cecilia Cordeiro et al. Spatiotemporal forecasting for dengue, chikungunya fever and Zika using machine learning and artificial expert committees based on meta-heuristics. Research on Biomedical Engineering, v. 38, n. 2, p. 499-537, 2022.
LIMA, Clarisse Lins de. Modelagem e simulação da transmissão de arboviroses baseados em agentes inteligentes para predição de casos de dengue, chikungunya e zika. 2020. Dissertação de Mestrado. Universidade Federal de Pernambuco.
FALCO, Javert Guimarães. Estatística aplicada. 2016.
HUANG, Guang-Bin; ZHU, Qin-Yu; SIEW, Chee-Kheong. Extreme learning machine: theory and applications. Neurocomputing, v. 70, n. 1-3, p. 489-501, 2006.
JAEGER, Herbert. The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany: German National Research Center for Information Technology GMD Technical Report, v. 148, n. 34, p. 13, 2001.
HAYKIN, S.; NIE, Junhong; CURRIE, B. Neural network-based receiver for wireless communications. Electronics Letters, v. 35, n. 3, p. 203-205, 1999.
JAEGER, Herbert. Echo state network. scholarpedia, v. 2, n. 9, p. 2330, 2007.
STEINER, Peter et al. PyRCN: A toolbox for exploration and application of Reservoir Computing Networks. Engineering Applications of Artificial Intelligence, v. 113, p. 104964, 2022.
RAMOS, Jorge Luis Cavalcanti et al. Um estudo comparativo de classificadores na previsão da evasão de alunos em EAD. In: Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE). 2018. p. 1463.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Submission of a paper to Journal of Health Informatics is understood to imply that it is not being considered for publication elsewhere and that the author(s) permission to publish his/her (their) article(s) in this Journal implies the exclusive authorization of the publishers to deal with all issues concerning the copyright therein. Upon the submission of an article, authors will be asked to sign a Copyright Notice. Acceptance of the agreement will ensure the widest possible dissemination of information. An e-mail will be sent to the corresponding author confirming receipt of the manuscript and acceptance of the agreement.