Analysis of healthcare predictions in Florianópolis

Authors

  • Luciano Weber Universidade Federal de Santa Catarina
  • Luís Antonio Lourenço Universidade Federal de Santa Catarina
  • Martina Klippel Brehm Universidade Federal de Santa Catarina
  • Pedro Matiucci Pereira Universidade Federal de Santa Catarina
  • Vinicius Faria Culmant Ramos Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1338

Keywords:

time series, prediction, primary health care, Medical care

Abstract

Objective: To compare time series models in predicting monthly individual visits in Florianópolis in 2024. Methods: Using public data on visits from 2019 to 2023 from the Brazilian Ministry of Health, applied in the ARIMA, SARIMA, Stacking and Holt-Winters models. The comparison was based on error metrics. Results: SARIMA showed greater accuracy, while ARIMA generated constant prediction for all months, although its error metrics were similar to SARIMA. Conclusions: The application of time series models is useful for public health planning, although differences between models indicate limitations. These techniques can optimize resources and improve the quality of care, but additional studies are needed to deepen the analyzes and improve predictions.

Author Biographies

Luciano Weber, Universidade Federal de Santa Catarina

Mestrando no Programa de Pós-graduação em Engenharia do Conhecimento, da Universidade Federal de Santa Catarina (UFSC) Florianópolis - Santa Catarina - Brasil.

Luís Antonio Lourenço, Universidade Federal de Santa Catarina

Pós-Doutorando no Programa de Pós-graduação em Engenharia do Conhecimento, da Universidade Federal de Santa Catarina (UFSC) Florianópolis - Santa Catarina - Brasil

Martina Klippel Brehm, Universidade Federal de Santa Catarina

Bacharelanda em Sistemas de Informação, na Universidade Federal de Santa Catarina (UFSC) Florianópolis - Santa Catarina - Brasil.

Pedro Matiucci Pereira, Universidade Federal de Santa Catarina

Bacharelando em Sistemas de Informação, na Universidade Federal de Santa Catarina (UFSC) Florianópolis - Santa Catarina - Brasil

Vinicius Faria Culmant Ramos, Universidade Federal de Santa Catarina

Professor Doutor no Programa de Pós-graduação em Engenharia do Conhecimento, da Universidade Federal de Santa Catarina (UFSC) Florianópolis - Santa Catarina - Brasil.

References

Arumugam V, Natarajan V. Time series modeling and forecasting using Autoregressive Integrated Moving Average and Seasonal Autoregressive Integrated Moving Average models. Instrum Mesure Métrol. 2023;22(4):161-8. doi:10.18280/i2m.220404 DOI: https://doi.org/10.18280/i2m.220404

Bolsoni L, Garcia LP, Calderón DBL. Predição de visitas domiciliares na atenção primária: uma abordagem de séries temporais com o modelo Autoregressive Integrated Moving Average. Rev Bras Med Fam Comunidade. 2022;17(44):3012. doi:10.5712/rbmfc17(44)3012 DOI: https://doi.org/10.5712/rbmfc17(44)3012

Box GEP, Jenkins GM, Reinsel GC, Ljung GM. Time series analysis: forecasting and control. 5th ed. New Jersey: John Wiley & Sons; 2015

Braun M, Hummel P. Data justice and data solidarity. Patterns. 2022;3. doi:10.1016/j.patter.2021.100427 DOI: https://doi.org/10.1016/j.patter.2021.100427

Carter SM, Carolan L, Saint James Aquino Y, et al. Australian women’s judgements about using artificial intelligence to read mammograms in breast cancer screening. Digit Health. 2023;9. doi:10.1177/20552076231191057 DOI: https://doi.org/10.1177/20552076231191057

Walsh CG, Chaudhry B, Dua P, et al. Stigma, biomarkers, and algorithmic bias: recommendations for precision behavioral health with artificial intelligence. JAMIA Open. 2020;3(1):9-15. doi:10.1093/jamiaopen/ooz054 DOI: https://doi.org/10.1093/jamiaopen/ooz054

d'Elia A, Gabbay M, Rodgers S, et al. Artificial intelligence and health inequities in primary care: a systematic scoping review and framework. Fam Med Community Health. 2022;10. doi:10.1136/fmch-2022-001670 DOI: https://doi.org/10.1136/fmch-2022-001670

Ettman CK, Galea S. The potential influence of AI on population mental health. JMIR Ment Health. 2023. doi:10.2196/49936 DOI: https://doi.org/10.2196/preprints.49936

Feroni RC, Andreão WL. Análise do modelo de Holt-Winters aplicado a uma série histórica de dados com tendência e sazonalidade. Blucher Physics Proceedings. 2017;4(1):228-31. DOI: https://doi.org/10.5151/phypro-viii-efa-48

Ghassemi M, Nsoesie EO. In medicine, how do we machine learn anything real? Patterns. 2022;3(1). doi:10.1016/j.patter.2021.100392 DOI: https://doi.org/10.1016/j.patter.2021.100392

Hübner UH, Egbert N, Schulte G. Clinical information systems – seen through the ethics lens. Yearb Med Inform. 2020;29(1):104-14. doi:10.1055/s-0040-1701996 DOI: https://doi.org/10.1055/s-0040-1701996

Lett E, La Cava WG. Translating intersectionality to fair machine learning in health sciences. Nat Mach Intell. 2023;5:476-9. doi:10.1038/s42256-023-00651-3 DOI: https://doi.org/10.1038/s42256-023-00651-3

Maschewski F, Nosthoff AV. Überwachungskapitalistische Biopolitik: Big Tech und die Regierung der Körper. Z Politikwiss. 2022;32:429-55. doi:10.1007/s41358-021-00309-9 DOI: https://doi.org/10.1007/s41358-021-00309-9

Mateus LF, Ourique F, Morales AS, Silva MN. Implementação de um modelo de previsão usando séries temporais para estimar excesso de óbitos no Brasil em 2020. J Health Inform. 2024;16(1). doi:10.59681/2175-4411.v16.2024.1003 DOI: https://doi.org/10.59681/2175-4411.v16.2024.1003

Mendes ACG, Sá DA, Miranda GMD, Lyra TM, Tavares RAW. Assistência pública de saúde no contexto da transição demográfica brasileira: exigências atuais e futuras. Cad Saúde Pública. 2012;28(5):955-64. doi:10.1590/S0102-311X2012000500014 DOI: https://doi.org/10.1590/S0102-311X2012000500014

Owoyemi A, Owoyemi J, Osiyemi A, Boyd A. Artificial intelligence for healthcare in Africa. Front Digit Health. 2020;2. doi:10.3389/fdgth.2020.00006 DOI: https://doi.org/10.3389/fdgth.2020.00006

Paula MG de. Aprendizagem cruzada para previsão de séries temporais univariadas [dissertation]. Brasília: Universidade de Brasília; 2022.

Patil H, Bolla BK, Sabeesh E, Bhumireddy DR. Comparative study of predicting stock index using deep learning models. In: International Conference on Cognitive Computing and Cyber Physical Systems. Cham: Springer Nature Switzerland; 2023. DOI: https://doi.org/10.1007/978-3-031-48888-7_4

Python Software Foundation. Python Language Site: Documentation. 2023. Available from: https://www.python.org/doc/. Accessed January 12, 2024.

Sefidian AM, Daneshpour N. Estimating missing data using novel correlation maximization-based methods. Appl Soft Comput. 2020;91:106249. doi:10.1016/j.asoc.2020.106249 DOI: https://doi.org/10.1016/j.asoc.2020.106249

Smith MJ, Axler R, Bean S, Rudzicz F, Shaw J. Four equity considerations for the use of artificial intelligence in public health. Bull World Health Organ. 2020;98:290-2. doi:10.2471/BLT.19.237503 DOI: https://doi.org/10.2471/BLT.19.237503

Soyiri IN, Reidpath DD. Evolving forecasting classifications and applications in health forecasting. Int J Gen Med. 2012;5:381-9. doi:10.2147/IJGM.S31079 DOI: https://doi.org/10.2147/IJGM.S31079

Wang HE, Landers M, Adams R, et al. A bias evaluation checklist for predictive models and its pilot application for 30-day hospital readmission models. J Am Med Inform Assoc. 2022;29(8):1323-33. doi:10.1093/jamia/ocac065 DOI: https://doi.org/10.1093/jamia/ocac065

Published

2024-11-19

How to Cite

Weber, L., Lourenço, L. A., Brehm, M. K., Pereira, P. M., & Ramos, V. F. C. (2024). Analysis of healthcare predictions in Florianópolis. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1338

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)