Bone age prediction from carpal radiographic images using deep learning

Authors

  • Rafael Guimarães Malanga UFCSPA
  • Viviane Rodrigues Botelho UFCSPA
  • Thatiane Alves Pianoschi UFCSPA
  • Jose Rodrigo Mendes Andrade HCPA
  • Guilherme Ribeiro Garcia HCPA
  • Rochelle Lykawka HCPA
  • Alexandre Bacelar HCPA
  • Carla Diniz Lopes Becker UFCSPA

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1361

Keywords:

Radiodiagnosis, Deep Learning, Bone Age

Abstract

Biological age, a crucial indicator of human development, reflects the physical and mental changes associated with aging. Estimating bone age, a common method in clinical practice that seeks information about biological age, can be subjective and imprecise. Objective: This study proposes methods based on deep learning techniques to estimate skeletal age from hand X-ray images. Methods: We used datasets divided by gender and age to train and test the models. Results: The results show promising estimates, with mean errors of 10.808 months in a public dataset and 15.548 months in a private dataset. The developed tool, with its intuitive graphical interface, offers practical use for medical professionals and researchers. Conclusion: This study applies deep learning to predict bone age, which can aid in assessing skeletal development in fields like pediatrics and orthopedics.

Author Biographies

Rafael Guimarães Malanga, UFCSPA

Master’s Student, Federal University of Health Sciences of Porto Alegre – UFCSPA, Porto Alegre (RS), Brazil.

Viviane Rodrigues Botelho, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Thatiane Alves Pianoschi, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Jose Rodrigo Mendes Andrade, HCPA

M.Sc, , Hospital of Clinics of Porto Alegre – HCPA, Porto Alegre (RS), Brazil.

Guilherme Ribeiro Garcia, HCPA

Bachelor of Physics, Hospital of Clinics of Porto Alegre – HCPA, Porto Alegre (RS), Brazil.

Rochelle Lykawka, HCPA

M.Sc, , Hospital of Clinics of Porto Alegre – HCPA, Porto Alegre (RS), Brazil.

Alexandre Bacelar, HCPA

M.Sc, , Hospital of Clinics of Porto Alegre – HCPA, Porto Alegre (RS), Brazil.

Carla Diniz Lopes Becker, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

References

Prokop-Piotrkowska M, Marszałek-Dziuba K, Moszczyńska E, Szalecki M, Jurkiewicz E. Traditional and new methods of bone age assessment-an overview. J Clin Res Pediatric Endocrinology. 2021;13:251. DOI: https://doi.org/10.4274/jcrpe.galenos.2020.2020.0091

Dallora AL, Anderberg P, Kvist O, Mendes E, Diaz Ruiz S, Sanmartin Berglund J. Bone age assessment with various machine learning techniques: A systematic literature review and meta-analysis. PLoS One. 2019;14 DOI: https://doi.org/10.1371/journal.pone.0220242

Delorme AL. Automatic methodology for bone age estimation using shape analysis in carpal radiographs [dissertação de mestrado]. São Carlos: School of Engineering of São Carlos, University of São Paulo; 2010. [citado em 13 fev 2023].

Vrbaški S, Ito M, Moyano LG, de Santana VF. Characterization of breast tissues in density and effective atomic number basis via spectral X-ray computed tomography. Physics in Medicine & Biology. 2023;68(14):145019. DOI: https://doi.org/10.1088/1361-6560/acdbb6

Todd TW. Atlas of Skeletal Maturation. The C.V. Mosby Company; 1937. p. 37.

Olivete Júnior C, Rodrigues ELL. Bone maturity: estimation by simplifications of the Eklof and Ringertz method. Radiol Bras. 2010;43. DOI: https://doi.org/10.1590/S0100-39842010000100006

Halabi SS, et al. The RSNA pediatric bone age machine learning challenge. Radiology. 2019;290:498-503. DOI: https://doi.org/10.1148/radiol.2018180736

Zulkifley MA, Mohamed NA, Abdani SR, Kamari NAM, Moubark AM, Ibrahim AA. Intelligent bone age assessment: an automated system to detect a bone growth problem using convolutional neural networks with attention mechanism. Diagnostics. 2021;11(5):765. DOI: https://doi.org/10.3390/diagnostics11050765

An DY. Bone age estimation using mosaics of ossification centers from carpal radiographs as input images for Deep Learning [dissertação de mestrado]. Espírito Santo: Federal Institute of Espírito Santo; 2017.

Lee H, et al. Fully Automated Deep Learning System for Bone Age Assessment. Boston: Springer; 2017. p. 30, 427-441. DOI: https://doi.org/10.1007/s10278-017-9955-8

Tuma CESN, et al. Assessment of bone age in children aged 9 to 12 years in the city of Manaus-AM. Dental Press J Orthod. 2011;16(3):63-69. DOI: https://doi.org/10.1590/S2176-94512011000300008

Pinto VCM, et al. Relationship of bone age and hormonal markers with the physical capacity of adolescents. J Hum Growth Dev. 2017;27(1):77-83. DOI: https://doi.org/10.7322/jhgd.127658

Published

2024-11-19

How to Cite

Malanga, R. G., Botelho, V. R., Pianoschi, T. A., Andrade, J. R. M., Garcia, G. R., Lykawka, R., … Becker, C. D. L. (2024). Bone age prediction from carpal radiographic images using deep learning. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1361

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)