Integration of databases for schistosomiasis studies for the state of Minas Gerais

Authors

  • Bruno Petrocchi de Sena Azevedo PUC Minas
  • Daniel Rocha Franca PUC Minas
  • Henri Gabriel Viana Ramos PUC Minas
  • Ligia Ferreira de Carvalho Gonçalves PUC Minas
  • Rafael Romualdo Pinto Rodrigues PUC Minas
  • Samuel Augusto Barbosa Santos PUC Minas
  • Marco Paulo Soares Gomes PUC Minas
  • Luis Enrique Zárate PUC Minas

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1375

Keywords:

Data Integration, Public Healthcare, Schistosomiasis

Abstract

Objective: this article proposes an integration of available data sources to create a database, at the municipal level, that allows the analysis of the prevalence of schistosomiasis in the state of Minas Gerais, Brazil. Method: through a process to understand the domain, the main dimensions and aspects (factors) that can influence the prevalence of the disease in a municipality were identified. The conceptual model generated by the understanding process helped the data integration process. Results: the integrated database made it possible to carry out descriptive analyses for the state, and it is a source for identifying patterns in municipalities prone to the disease. Conclusions: The resulting database will allow the construction of predictive models for the formulation of public policies and municipal intervention programs.

Author Biographies

Bruno Petrocchi de Sena Azevedo, PUC Minas

Bac., Ciência de Dados, PUC Minas, Belo Horizonte (MG), Brasil

Daniel Rocha Franca, PUC Minas

Bac., Ciência de Dados, PUC Minas, Belo Horizonte (MG), Brasil

Henri Gabriel Viana Ramos, PUC Minas

Bac., Ciência de Dados, PUC Minas, Belo Horizonte (MG), Brasil 

Ligia Ferreira de Carvalho Gonçalves, PUC Minas

Bac., Ciência de Dados, PUC Minas, Belo Horizonte (MG), Brasil

Rafael Romualdo Pinto Rodrigues, PUC Minas

Bac., Ciência de Dados, PUC Minas, Belo Horizonte (MG), Brasil

Samuel Augusto Barbosa Santos, PUC Minas

Bac., Ciência de Dados, PUC Minas, Belo Horizonte (MG), Brasil 

Marco Paulo Soares Gomes, PUC Minas

Dr., Ciência de Dados, PUC Minas, Belo Horizonte (MG), Brasil

Luis Enrique Zárate, PUC Minas

Dr., Ciência de Dados, PUC Minas, Belo Horizonte (MG), Brasil

References

LoVerde PT. Schistosomiasis. Adv Exp Med Biol. 2019;1154:45-70. doi: 10.1007/978-3-030-18616-6_3. PMID: 31297759.

Dutra , A. S. de S., Dutra , R. F. F., Costa , G. F. da, Cruz , B. I. L. da, Oliveira , K. de, Souza , N. K. F. de, Jugo , K. E. L., Souza, L. A. de, Abeiya, K.-A., Alexandre , A. sandriely A., Farias , G. de H., & Farias , E. C. M. de H. (2024). Análise da Esquistossomose na região nordeste de 2020 a 2023: Brazilian Journal of Implantology and Health Sciences, 6(2), 691–711. https://doi.org/10.36557/2674-8169.2024v6n2p691-711

FRANÇA, F. S.; SILVA, A. S.; MAGALHÃES, C. M. M.; BENEVIDES, K. S. Esquistossomose: uma endemia de importância no Brasil. RBAC, v.52, p.224-7, 2020.

Santos MCS, Oliveira GL, Mingoti SA, Heller L. Effect of environmental factors in reducing the prevalence of schistosomiasis in schoolchildren: An analysis of three extensive national prevalence surveys in Brazil (1950-2018). PLoS Negl Trop Dis. 2023 Jul 17;17(7):e0010804. doi: 10.1371/journal.pntd.0010804. PMID: 37459358; PMCID: PMC10374055.

Teresinha Schröder N, Fraga Da Silveira E, Thomasi Janhke Botton L, Périco E. Neglected diseases in Brazil: space-temporal trends and public policies [Internet]. Neglected Tropical Diseases - Unsolved Debts for the One Health Approach. IntechOpen; 2023. Available from: http://dx.doi.org/10.5772/intechopen.1003000

Silva, J. de P., Ramos, S. B., & Andrade, M. de. (2018). Multivariate analysis of schistosomiasis in the state of Minas Gerais: principal component analysis. ABCS Health Sciences, 43(2). https://doi.org/10.7322/abcshs.v43i2.995

Hofstraat, K., & van Brakel, W. H. (2016). Social stigma towards neglected tropical diseases: a systematic review. International Health, 8(suppl_1), i53-i70.

Zárate, L.E., Petrocchi , B., Dias Maia, C., Felix, C., & Gomes, M. P. (2023). CAPTO - A method for understanding problem domains for data science projects: CAPTO - Um método para entendimento de domínio de problema para projetos em ciência de dados. Concilium, 23(15), 922–941. https://doi.org/10.53660/CLM-1815-23M33.

Braga RD, Lucena FN, Ribeiro-Rotta RF. A preliminary multiprofessional information model for Brazilian primary care. J Health Inform. 2020 Apr/Jun; 14(2):319-326.

Harrison K, Rahimi N, Danovaro-Holliday MC. Factors limiting data quality in the expanded programme on immunization in low and middle-income countries: A scoping review. J Health Inform. 2020 Apr/Jun; 14(2):319-326.

Published

2024-11-19

How to Cite

Azevedo, B. P. de S., Franca, D. R., Ramos, H. G. V., Gonçalves, L. F. de C., Rodrigues, R. R. P., Santos, S. A. B., … Zárate, L. E. (2024). Integration of databases for schistosomiasis studies for the state of Minas Gerais. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1375

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.