Prediction models applied in stroke diagnosis: a scope review
DOI:
https://doi.org/10.59681/2175-4411.v15.i2.2023.980Keywords:
CVA, prediction models, scope reviewAbstract
Objective: In this article, a scope review is presented with the objective of identifying prediction models applied in the diagnosis of Cerebral Vascular Accident (CVA). Method: RE was performed on five search sources, using a search string and inclusion and exclusion criteria. Results: After carrying out the steps defined in the protocol, 615 papers were returned in the first step, of which only 9 were selected to be analyzed and have their information extracted. Conclusion: Through the results presented, it was possible to identify that most of the works developed learning models, followed by the comparison of algorithms and creation of algorithms. Regarding the resources used, the most used were: Python programming language and scikit-learn library. The most used models and algorithms are: Decision tree, Naive Bayes, Random Forest and KNN (K-Nearest Neighbors). Most of the works analyzed used the metrics Recall, Precision, F1-Score and Accuracy to validate the solutions. Among the identified limitations, those related to the evaluation of the performance of the proposed solutions and the absence of relevant aspects for the analyzed studies stand out.
References
Campbell BCV, Khatri P. Stroke. The Lancet; 2020 [Citado 2023 out 3]. Disponível em: http://dx.doi.org/10.1016/S0140-6736(20)31179-X. DOI: https://doi.org/10.1016/S0140-6736(20)31179-X
Brasil MSD. Diretrizes de Atenção à Reabilitação da Pessoa com Acidente Vascular Cerebral / Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Ações Programáticas Estratégicas. Brasília: Ministério da Saúde; 2013 [Citado 2023 out 3]. Disponível em: https://bvsms.saude.gov.br/bvs/publicacoes/diretrizes_atencao_reabilitacao_acidente_vascular_cerebral.pdf.
Meschia JF, Bushnell C, Boden-Albala B, Braun LT, Bravata DM, Chaturvedi S, et al. Guidelines for the Primary Prevention of Stroke: A Statement for Healthcare Professionals from the American Heart Association/American Stroke Association. 2014; 45(12), 3754-3832. [Citado 2023 out 3]. Disponível em: https://www.ahajournals.org/doi/full/10.1161/STR.0000000000000046. DOI: https://doi.org/10.1161/STR.0000000000000046
Tursynova A, Omarov B, Shuketayeva K, Smagul M. 2021, Artificial Intelligence in Stroke Imaging. International Conference on Cloud Computing, Data Science & Engineering (Confluence). 2021 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1109/Confluence51648.2021.9377102. DOI: https://doi.org/10.1109/Confluence51648.2021.9377102
Yu J, Park S, Kwon S-H, Ho CMB, Pyo C-S, Lee H. AI-Based Stroke Disease Prediction System Using Real-Time Electromyography Signals. Applied Sciences. 2020 [Citado 2023 out 3]. Disponível em: https://doi.org/10.3390/app10196791. DOI: https://doi.org/10.3390/app10196791
Oliveira WCGD, Lira AASA, Silva MPS, Leite CRM, Silva JEG. Sistema multi-agente fuzzy para monitoramento e avaliação. In: Novas Tecnologias Aplicadas à Saúde: Desenvolvimento de Sistemas Dinâmicos: conceitos, aplicações e utilização de técnicas inteligentes e regulação. Mossoró: EDUERN; 2019. p.497-523. [Citado 2023 out 3] Disponível em: https://repositorio.unb.br/handle/10482/37883.
Arksey H, O’Malley L. Scoping studies: towards a methodological framework. International Journal of Social Research Methodology. 2005; 8(1), 19–32. [Citado 2023 out 3] Disponível em: https://doi.org/10.1080/1364557032000119616. DOI: https://doi.org/10.1080/1364557032000119616
Peters MDJ, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil H. Capítulo 11. Scoping Reviews. In: Aromataris E, Munn Z. JBI Manual for Evidence Synthesis. 2020 [Citado 2023 out 3]. Disponível em: https://doi.org/10.46658/JBIMES-20-12. DOI: https://doi.org/10.46658/JBIRM-20-01
Levac D, Colquhoun H, O'Brien KK. Scoping studies: advancing the methodology. Implement. sci. 2010; 5(1):5-69. DOI: https://doi.org/10.1186/1748-5908-5-69
García-Temza L, Risco-Martín JL, Ayala JL, Roselló GR, Camarasaltas JM Comparison of Different Machine Learning Approaches to Model Stroke Subtype Classification and Risk Prediction. Spring Simulation Conference (SpringSim). 2019 [Citado 2023 out 3]. Disponível em: https://doi.org/10.23919/SpringSim.2019.8732846. DOI: https://doi.org/10.23919/SpringSim.2019.8732846
Hakim MA, Hasan MZ, Alam MM, Hasan MM, Huda MM. An Efficient Modified Bagging Method for Early Prediction of Brain Stroke. International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2). 2019 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1109/IC4ME247184.2019.9036700. DOI: https://doi.org/10.1109/IC4ME247184.2019.9036700
Shoily TI, Islam T, Jannat, Tanna SA, Alif TM, Ema RR. Detection of Stroke Disease Using Machine Learning Algorithms. International Conference on Computing, Communication and Networking Technologies (ICCCNT). 2019 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1109/ICCCNT45670.2019.8944689. DOI: https://doi.org/10.1109/ICCCNT45670.2019.8944689
Yu J, Kim D, Park H, Chon S, Cho KH, Kim S, et al. Semantic Analysis of NIH Stroke Scale Using Machine Learning Techniques. International Conference on Platform Technology and Service (PlatCon). 2019 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1109/PlatCon.2019.8668961. DOI: https://doi.org/10.1109/PlatCon.2019.8668961
Emon MU, Keya MS, Meghla TI, Rahman MM, Mamun MAS, Kaiser MS. Performance Analysis of Machine Learning Approaches in Stroke Prediction. International Conference on Electronics, Communication and Aerospace Technology (ICECA). 2020 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1109/ICECA49313.2020.9297525. DOI: https://doi.org/10.1109/ICECA49313.2020.9297525
Induja SN, Raji CG. Computational Methods for Predicting Chronic Disease in Healthcare Communities. International Conference on Data Science and Communication (IconDSC). 2019 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1109/IconDSC.2019.8817044. DOI: https://doi.org/10.1109/IconDSC.2019.8817044
Fang G, Xu P, Liu W. Automated Ischemic Stroke Subtyping Based on Machine Learning Approach. IEEE Access. 2020 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1109/ACCESS.2020.3004977. DOI: https://doi.org/10.1109/ACCESS.2020.3004977
Hayashi Y, Shimada T, Hattori N, Shimazu T, Yoshida Y, Miura RE. A prehospital diagnostic algorithm for strokes using machine learning: a prospective observational study. Sci Rep. 2021 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1038/s41598-021-99828-2. DOI: https://doi.org/10.1038/s41598-021-99828-2
Singh MS, Choudhary P. Stroke prediction using artificial intelligence. Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON). 2017 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1109/IEMECON.2017.8079581. DOI: https://doi.org/10.1109/IEMECON.2017.8079581
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Maria Adriana Ferreira da Silva, Angélica Félix de Castro, Isaac de Lima Oliveira Filho
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Submission of a paper to Journal of Health Informatics is understood to imply that it is not being considered for publication elsewhere and that the author(s) permission to publish his/her (their) article(s) in this Journal implies the exclusive authorization of the publishers to deal with all issues concerning the copyright therein. Upon the submission of an article, authors will be asked to sign a Copyright Notice. Acceptance of the agreement will ensure the widest possible dissemination of information. An e-mail will be sent to the corresponding author confirming receipt of the manuscript and acceptance of the agreement.