Prediction models applied in stroke diagnosis: a scope review

Authors

  • Maria Adriana Ferreira da Silva Engenheira de Software, Universidade Federal Rural do Semi-Árido – UFERSA, Pau dos Ferros (RN), Brasil e Discente do Programa de Pós-Graduação em Ciência da Computação - PPgCC, Universidade Federal Rural do Semi-Árido - UFERSA e Universidade do Estado do Rio Grande do Norte - UERN, Mossoró (RN), Brasil. https://orcid.org/0000-0002-3562-9787
  • Angélica Félix de Castro Professora Associada do Departamento de Computação, Universidade Federal Rural do Semi-Árido - UFERSA, Mossoró (RN), Brasil. https://orcid.org/0000-0002-2250-9305
  • Isaac de Lima Oliveira Filho Professor Efetivo do Departamento de Informática, Universidade do Estado do Rio Grande do Norte – UERN, Mossoró (RN), Brasil. https://orcid.org/0000-0001-7789-3343

DOI:

https://doi.org/10.59681/2175-4411.v15.i2.2023.980

Keywords:

CVA, prediction models, scope review

Abstract

Objective: In this article, a scope review is presented with the objective of identifying prediction models applied in the diagnosis of Cerebral Vascular Accident (CVA). Method: RE was performed on five search sources, using a search string and inclusion and exclusion criteria. Results: After carrying out the steps defined in the protocol, 615 papers were returned in the first step, of which only 9 were selected to be analyzed and have their information extracted. Conclusion: Through the results presented, it was possible to identify that most of the works developed learning models, followed by the comparison of algorithms and creation of algorithms. Regarding the resources used, the most used were: Python programming language and scikit-learn library. The most used models and algorithms are: Decision tree, Naive Bayes, Random Forest and KNN (K-Nearest Neighbors). Most of the works analyzed used the metrics Recall, Precision, F1-Score and Accuracy to validate the solutions. Among the identified limitations, those related to the evaluation of the performance of the proposed solutions and the absence of relevant aspects for the analyzed studies stand out.

References

Campbell BCV, Khatri P. Stroke. The Lancet; 2020 [Citado 2023 out 3]. Disponível em: http://dx.doi.org/10.1016/S0140-6736(20)31179-X. DOI: https://doi.org/10.1016/S0140-6736(20)31179-X

Brasil MSD. Diretrizes de Atenção à Reabilitação da Pessoa com Acidente Vascular Cerebral / Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Ações Programáticas Estratégicas. Brasília: Ministério da Saúde; 2013 [Citado 2023 out 3]. Disponível em: https://bvsms.saude.gov.br/bvs/publicacoes/diretrizes_atencao_reabilitacao_acidente_vascular_cerebral.pdf.

Meschia JF, Bushnell C, Boden-Albala B, Braun LT, Bravata DM, Chaturvedi S, et al. Guidelines for the Primary Prevention of Stroke: A Statement for Healthcare Professionals from the American Heart Association/American Stroke Association. 2014; 45(12), 3754-3832. [Citado 2023 out 3]. Disponível em: https://www.ahajournals.org/doi/full/10.1161/STR.0000000000000046. DOI: https://doi.org/10.1161/STR.0000000000000046

Tursynova A, Omarov B, Shuketayeva K, Smagul M. 2021, Artificial Intelligence in Stroke Imaging. International Conference on Cloud Computing, Data Science & Engineering (Confluence). 2021 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1109/Confluence51648.2021.9377102. DOI: https://doi.org/10.1109/Confluence51648.2021.9377102

Yu J, Park S, Kwon S-H, Ho CMB, Pyo C-S, Lee H. AI-Based Stroke Disease Prediction System Using Real-Time Electromyography Signals. Applied Sciences. 2020 [Citado 2023 out 3]. Disponível em: https://doi.org/10.3390/app10196791. DOI: https://doi.org/10.3390/app10196791

Oliveira WCGD, Lira AASA, Silva MPS, Leite CRM, Silva JEG. Sistema multi-agente fuzzy para monitoramento e avaliação. In: Novas Tecnologias Aplicadas à Saúde: Desenvolvimento de Sistemas Dinâmicos: conceitos, aplicações e utilização de técnicas inteligentes e regulação. Mossoró: EDUERN; 2019. p.497-523. [Citado 2023 out 3] Disponível em: https://repositorio.unb.br/handle/10482/37883.

Arksey H, O’Malley L. Scoping studies: towards a methodological framework. International Journal of Social Research Methodology. 2005; 8(1), 19–32. [Citado 2023 out 3] Disponível em: https://doi.org/10.1080/1364557032000119616. DOI: https://doi.org/10.1080/1364557032000119616

Peters MDJ, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil H. Capítulo 11. Scoping Reviews. In: Aromataris E, Munn Z. JBI Manual for Evidence Synthesis. 2020 [Citado 2023 out 3]. Disponível em: https://doi.org/10.46658/JBIMES-20-12. DOI: https://doi.org/10.46658/JBIRM-20-01

Levac D, Colquhoun H, O'Brien KK. Scoping studies: advancing the methodology. Implement. sci. 2010; 5(1):5-69. DOI: https://doi.org/10.1186/1748-5908-5-69

García-Temza L, Risco-Martín JL, Ayala JL, Roselló GR, Camarasaltas JM Comparison of Different Machine Learning Approaches to Model Stroke Subtype Classification and Risk Prediction. Spring Simulation Conference (SpringSim). 2019 [Citado 2023 out 3]. Disponível em: https://doi.org/10.23919/SpringSim.2019.8732846. DOI: https://doi.org/10.23919/SpringSim.2019.8732846

Hakim MA, Hasan MZ, Alam MM, Hasan MM, Huda MM. An Efficient Modified Bagging Method for Early Prediction of Brain Stroke. International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2). 2019 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1109/IC4ME247184.2019.9036700. DOI: https://doi.org/10.1109/IC4ME247184.2019.9036700

Shoily TI, Islam T, Jannat, Tanna SA, Alif TM, Ema RR. Detection of Stroke Disease Using Machine Learning Algorithms. International Conference on Computing, Communication and Networking Technologies (ICCCNT). 2019 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1109/ICCCNT45670.2019.8944689. DOI: https://doi.org/10.1109/ICCCNT45670.2019.8944689

Yu J, Kim D, Park H, Chon S, Cho KH, Kim S, et al. Semantic Analysis of NIH Stroke Scale Using Machine Learning Techniques. International Conference on Platform Technology and Service (PlatCon). 2019 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1109/PlatCon.2019.8668961. DOI: https://doi.org/10.1109/PlatCon.2019.8668961

Emon MU, Keya MS, Meghla TI, Rahman MM, Mamun MAS, Kaiser MS. Performance Analysis of Machine Learning Approaches in Stroke Prediction. International Conference on Electronics, Communication and Aerospace Technology (ICECA). 2020 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1109/ICECA49313.2020.9297525. DOI: https://doi.org/10.1109/ICECA49313.2020.9297525

Induja SN, Raji CG. Computational Methods for Predicting Chronic Disease in Healthcare Communities. International Conference on Data Science and Communication (IconDSC). 2019 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1109/IconDSC.2019.8817044. DOI: https://doi.org/10.1109/IconDSC.2019.8817044

Fang G, Xu P, Liu W. Automated Ischemic Stroke Subtyping Based on Machine Learning Approach. IEEE Access. 2020 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1109/ACCESS.2020.3004977. DOI: https://doi.org/10.1109/ACCESS.2020.3004977

Hayashi Y, Shimada T, Hattori N, Shimazu T, Yoshida Y, Miura RE. A prehospital diagnostic algorithm for strokes using machine learning: a prospective observational study. Sci Rep. 2021 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1038/s41598-021-99828-2. DOI: https://doi.org/10.1038/s41598-021-99828-2

Singh MS, Choudhary P. Stroke prediction using artificial intelligence. Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON). 2017 [Citado 2023 out 3]. Disponível em: https://doi.org/10.1109/IEMECON.2017.8079581. DOI: https://doi.org/10.1109/IEMECON.2017.8079581

Published

2023-10-18

How to Cite

Silva, M. A. F. da, Castro, A. F. de, & Oliveira Filho, I. de L. (2023). Prediction models applied in stroke diagnosis: a scope review. Journal of Health Informatics, 15(2), 39–45. https://doi.org/10.59681/2175-4411.v15.i2.2023.980

Issue

Section

Review

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.