Predicción del deterioro cognitivo leve: integración de variables cognitivas y motoras

Autores/as

  • Maria Luiza Wuillaume National Institute of Technology
  • Jefferson de Moraes Rafael National Institute of Technology
  • Lucas Martins Lago National Institute of Technology
  • Jessica Plácido Federal University of Rio de Janeiro
  • Felipe de Oliveira Rio de Janeiro State University
  • Pedro Amaral Pereira National Institute of Technology
  • Manoel Carlos Saisse National Institute of Technology
  • Claudio Miceli Federal University of Rio de Janeiro
  • Andréa Deslandes Federal University of Rio de Janeiro
  • Andréa Nunes Carvalho National Institute of Technology

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1258

Palabras clave:

Pronóstico, Aprendizaje Automático, Deterioro Cognitivo Leve

Resumen

Objetivo: El Deterioro Cognitivo Leve (DCL) representa un estadio intermedio entre el envejecimiento normal y la demencia, que requiere una detección precoz para evitar su progresión.  Este estudio pretende desarrollar un modelo de clasificación de aprendizaje automático para predecir con precisión el pronóstico de los individuos con DCL, diferenciándolos de los sanos. Método: El método integra variables motoras y cognitivas, así como información autoinformada. Se aplicaron los algoritmos SVM, KNN y XGBoost. La mejor predicción se evaluó mediante el método del valor de Shapley para determinar la importancia de cada variable. Resultados: El SVM produjo los mejores resultados, alcanzando 88% de sensibilidad y revelando que las variables del dominio motor y de los dominios cognitivo y motor son altamente relevantes para la clasificación. Conclusión: Además de ser más accesible, el método desarrollado presentó alta sensibilidad en la clasificación de DCL basada en la integración de variables cognitivas y motoras.

Biografía del autor/a

Maria Luiza Wuillaume, National Institute of Technology

Industrial Assessments and Processes Division, National Institute of Technology, Rio de Janeiro, (RJ), Brazil.

Jefferson de Moraes Rafael, National Institute of Technology

Industrial Assessments and Processes Division, National Institute of Technology, Rio de Janeiro, (RJ), Brazil.

Lucas Martins Lago, National Institute of Technology

Industrial Assessments and Processes Division, National Institute of Technology, Rio de Janeiro, (RJ), Brazil.

Jessica Plácido, Federal University of Rio de Janeiro

M.Sc., Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro (RJ), Brazil.

Felipe de Oliveira, Rio de Janeiro State University

Prof. M.Sc., Physical Education and Sports Institute, Rio de Janeiro State University, Rio de Janeiro (RJ), Brazil.

Pedro Amaral Pereira, National Institute of Technology

Industrial Assessments and Processes Division, National Institute of Technology, Rio de Janeiro, (RJ), Brazil.

Manoel Carlos Saisse, National Institute of Technology

D.Sc., Industrial Assessments and Processes Division, National Institute of Technology, Rio de Janeiro, (RJ), Brazil.

Claudio Miceli, Federal University of Rio de Janeiro

D.Sc, Systems and Computer Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro (RJ), Brazil

Andréa Deslandes, Federal University of Rio de Janeiro

D.Sc, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro (RJ), Brazil

Andréa Nunes Carvalho, National Institute of Technology

D.Sc., Industrial Assessments and Processes Division, National Institute of Technology, Rio de Janeiro, (RJ), Brazil.

Citas

Petersen RC. Mild cognitive impairment. CONTINUUM: Lifelong Learning in Neurology. 2016;22(2 Dementia):404.

Sabbagh MN, Boada M, Borson S, Chilukuri M, Doraiswamy PM, Dubois B, et al. Rationale for Early Diagnosis of Mild Cognitive Impairment (MCI) supported by Emerging Digital Technologies [Re- view]. Journal of Prevention of Alzheimer’s Disease. 2020;7(3):158 – 164.

de Oliveira Silva F, Ferreira JV, Plácido J, Chagas D, Praxedes J, Guimarães C, et al. Stages of mild cognitive impairment and Alzheimer’s disease can be differentiated by declines in timed up and go test: A systematic review and meta-analysis [Review]. Archives of Gerontology and Geriatrics. 2019;85.

Javeed A, Dallora AL, Berglund JS, Ali A, Ali L, Anderberg P. Machine Learning for Dementia Prediction: A Systematic Review and Future Research Directions [Article]. Journal of Medical Systems. 2023;47(1).

Gómez-Ramírez J, Ávila Villanueva M, Fernández-Blázquez MA. Selecting the most important self-assessed features for predicting conversion to mild cognitive impairment with random forest and permutation- based methods [Article]. Scientific Reports. 2020;10(1).

Twait EL, Andaur Navarro CL, Gudnason V, Hu YH, Launer LJ, Geer- lings MI. Dementia prediction in the general population using clinically accessible variables: a proof-of-concept study using machine learning. The AGES-Reykjavik study [Article]. BMC Medical Informatics and Decision Making. 2023;23(1).

Aljumaili M, McLeod R, Friesen M. Serious Games and ML for Detecting MCI. In: 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP); 2019. p. 1-5.

Grueso S, Viejo-Sobera R. Machine learning methods for predicting progression from mild cognitive impairment to Alzheimer’s disease dementia: a systematic review. Alzheimer’s research & therapy. 2021;13:1- 29.

Plácido J, Ferreira JV, Araújo J, Silva FdO, Ferreira RB, Guimarães C, et al. Beyond the Mini-Mental State Examination: The use of physical and spatial navigation tests to help to screen for mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer’s Disease. 2021;81(3):1243-52.

Ghoraani B, Boettcher LN, Hssayeni MD, Rosenfeld A, Tolea MI, Galvin JE. Detection of mild cognitive impairment and Alzheimer’s dis- ease using dual-task gait assessments and machine learning. Biomedical signal processing and control. 2021;64:102249.

Okpara C, Edokwe C, Ioannidis G, Papaioannou A, Adachi JD, Thabane L. The reporting and handling of missing data in longitudinal studies of older adults is suboptimal: a methodological survey of geriatric journals. BMC medical research methodology. 2022;22(1):122.

Minhas S, Khanum A, Riaz F, Khan SA, Alvi A. Predicting Progression From Mild Cognitive Impairment to Alzheimer’s Disease Using Autoregressive Modelling of Longitudinal and Multimodal Biomarkers. IEEE Journal of Biomedical and Health Informatics. 2018;22(3):818-25.

Sarker IH. Machine learning: Algorithms, real-world applications and research directions. SN computer science. 2021;2(3):160.

Bloice MD, Holzinger A. A tutorial on machine learning and data science tools with python. Machine Learning for Health Informatics: State-of-the-Art and Future Challenges. 2016:435-80.

Wang J, Wang Z, Liu N, Liu C, Mao C, Dong L, et al. Random forest model in the diagnosis of dementia patients with normal mini- mental state examination scores. Journal of personalized medicine. 2022;12(1):37.

Tatiyama Miyamoto S, Júnior I, Berg K, Ramos L, Natour J. Brazilian version of the Berg Balance Scale. Brazilian journal of medical and biological research = Revista brasileira de pesquisas médicas e biológicas / Sociedade Brasileira de Biofísica [et al]. 2004 09;37:1411- 21.

Teixeira I, de Oliveira Silva F, Ferreira J, Plácido J, Marinho V, Deslandes A. Utility of handgrip strength cut-offs for identification of weakness and disability in community-dwelling older people with mild cognitive impairment and Alzheimer’s disease. Jornal Brasileiro de Psiquiatria. 2019 12;68:208-14.

Plácido J, Ferreira J, Araújo J, de Oliveira Silva F, Ferreira R, Guimarães C, et al. Beyond the Mini-Mental State Examination: The Use of Physical and Spatial Navigation Tests to Help to Screen for Mild Cognitive Impairment and Alzheimer’s Disease. Journal of Alzheimer’s Disease. 2021 04;81:1-10.

Whitson HE, Potter GG, Feld JA, Plassman BL, Reynolds K, Sloane R, et al. Dual-task gait and Alzheimer’s disease genetic risk in cognitively Normal adults: a pilot study. Journal of Alzheimer’s Disease. 2018;64(4):1137-48.

Han G, Maruta M, Ikeda Y, Ishikawa T, Tanaka H, Koyama A, et al. Relationship between Performance on the Mini-Mental State Examination Sub-Items and Activities of Daily Living in Patients with Alzheimer’s Disease. Journal of Clinical Medicine. 2020 05;9:1537.

Carvalho G, Caramelli P. Normative data for middle-aged Brazilians in Verbal Fluency (animals and FAS), Trail Making Test (TMT) and Clock Drawing Test (CDT). Dementia Neuropsychologia. 2020 03;14:14-23.

Lichtenberger EO, Kaufman AS. Essentials of WAIS-IV assessment. vol. 50. John Wiley & Sons; 2009.

Ha J, Kambe M, Pe J. Data Mining: Concepts and Techniques. Elsevier; 2011.

Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. vol. 4; 2012. p. 2951 – 2959.

Lundberg SM, Lee SI. A unified approach to interpreting model predictions. vol. 2017-December; 2017. p. 4766 – 4775.

Publicado

2024-11-19

Cómo citar

Wuillaume, M. L., Rafael, J. de M., Lago, L. M., Plácido, J., de Oliveira, F., Pereira, P. A., … Carvalho, A. N. (2024). Predicción del deterioro cognitivo leve: integración de variables cognitivas y motoras. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1258

Artículos similares

<< < 1 2 3 4 5 6 > >> 

También puede {advancedSearchLink} para este artículo.