Geração de dados sintéticos para classificação de disléxicos por meio de aprendizado de máquina
Palabras clave:
Dislexia, Aprendizado de Máquina, LeituraResumen
Objetivo: Este estudo pretende aplicar a técnica de geração de dados sintéticos com auxílio de técnicas de limpeza de dados para a classificação de disléxicos e não - disléxicos. Método: Os outliers foram selecionados por especialista. Foi feito uma geração sintética de dados. para cada um de cinco algoritmos foram selecionados características com busca exaustiva. Cada algoritmo foi executado com as características selecionadas e então suas curvas de calibração foram comparadas. Resultados: A regressão logística se destacou como o melhor algoritmo, apresentando o resultado de 99% de acurácia e área sob a curva ROC de 0,999, além de ter obtido a melhor curva de calibração Conclusão: O uso da geração sintética de dados e seleção de características foram capazes de fazer todos os algoritmos avaliados obterem ótimos resultados na classificação de disléxicos e não disléxicos. A regressão logística foi selecionado como melhor algoritmo para classificação de disléxicos.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.