Método de Aprendizagem de Máquina para Classificação da intensidade do desvio vocal utilizando Random Forest
Palabras clave:
Aprendizagem de máquina, Distúrbios da voz, Espectrografia do somResumen
Objetivo: Utilizar imagens espectrográficas da voz para classificar a intensidade do desvio vocal, avaliar e comparar a eficiência do modelo de classificação Random Forest (RF) com o Naive Bayes (NB) e Support Vector Machine (SVM). Método: Foram selecionadas, aleatoriamente, 198 amostras de indivíduos com desvio vocal classificados com intensidade entre leve e moderada. A vogal /e/ sustentada foi selecionada para este estudo, pois é a vogal mais comumente utilizada para avaliação da qualidade vocal na realidade brasileira. Resultado: O RF obteve o melhor resultado, com acurácia de 78% e Kappa 0,41. Os resultados deste trabalho foram considerados satisfatórios. Conclusão: O modelo de classificação RF obteve resultados satisfatórios. Foi utilizado o Short-Time Fourier Transform para gerar os espectrogramas do sinal de voz. As intensidades do desvio vocal utilizadas nesse trabalho, foram as do tipo leve e moderado. A metotodologia de classificação utilizada mostrou-se relevante para o processo de classificação da intensidade do desvio.Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.