Estratégias Preditivas na Detecção do Agravamento do Quadro Clínico de Pacientes com COVID-19: Uma Revisão de Escopo
Palabras clave:
COVID-19, Modelo de Predição, Aprendizagem de Máquina, Revisão de EscopoResumen
Objetivo: Este artigo apresenta uma Revisão de Escopo (RE) para identificar estratégias preditivas na detecção do agravamento do quadro clínico de pacientes com a COVID-19. Método: A RE foi conduzida com a busca de trabalhos indexados em seis fontes de busca usando uma string de busca, critérios de inclusão e exclusão. Resultados: Mediante a execução do protocolo da RE, 329 estudos foram retornados, dos quais 9 foram selecionados ao final da análise. Na avaliação dos estudos, foi possível identificar os algoritmos utilizados na construção dos modelos de predição, as linguagens e ferramentas, a origem dos dados, bem como as variáveis mais relevantes. Conclusão: A partir dos resultados alcançados, pode-se concluir que modelos preditivos estão sendo desenvolvidos com o objetivo de auxiliar os profissionais de saúde na detecção de fatores relacionados ao agravamento da doença, mas poucos estão sendo disponibilizados, o que dificulta a utilização em um contexto real.Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.