Aprendizado de máquinas para predição de resistência microbiana
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1264Palavras-chave:
Unidade de Terapia Intensiva, Aprendizado de Máquina, Resistência MicrobianaResumo
A resistência a antibióticos representa uma preocupação significativa para a saúde global, particularmente em unidades de terapia intensiva (UTIs), onde o diagnóstico rápido é essencial. Objetivo do estudo: Testar algoritmos de aprendizado de máquina para prever a resistência bacteriana em UTIs; Métodos: Os fatores idade, gênero, tipo de amostra, antibiótico testado e coloração de Gram das bactérias foram retirados do banco de dados MIMIC-III e usados para treinamento de seis modelos de aprendizado de máquinas. Resultados: O Extreme Gradient Boosting demonstrou a maior precisão de previsão, com 84,53%. Conclusão: o aprendizado de máquina poderia oferecer uma solução para a detecção precoce da resistência a antibióticos, melhorando assim o cuidado do paciente e o manejo dos antibióticos.
Referências
IACG. No Time To Wait: Securing the Future From Drug-Resistant Infections Report To the Secretary-General of the United Nations [Internet]. World Health Organization. 2019. Available from: https://www.who.int/antimicrobial-resistance/interagency-coordination- group/IACG_final_report_EN.pdf?ua=1
Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet [Internet]. 2022 Feb 12 [cited 2022 Sep 10];399(10325):629–55. Available from: http://www.thelancet.com/article/S0140673621027240/fulltext
March-Rosselló GA. Rapid methods for detection of bacterial resistance to antibiotics. Enfermedades Infecc y Microbiol Clínica (English Ed [Internet]. 2017 Mar 1 [cited 2022 Sep 10];35(3):182–8. Available from: https://www.elsevier.es/en-revista-enfermedades- infecciosas-microbiologia-clinica-english-428-articulo-rapid-methods-for-detection- bacterial-S2529993X17300606
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit Care Med [Internet]. 2021 Nov 1 [cited 2022 Sep 10];49(11):E1063–143. Available from: https://journals.lww.com/ccmjournal/Fulltext/2021/11000/Surviving_Sepsis_Campaign I nternational.21.aspx
Anahtar MN, Yang JH, Kanjilal S. Applications of Machine Learning to the Problem of Antimicrobial Resistance: an Emerging Model for Translational Research. J Clin Microbiol [Internet]. 2021 Jun 18 [cited 2022 Apr 15];59(7):e0126020. Available from: https://journals.asm.org/journal/jcm
Feretzakis G, Sakagianni A, Loupelis E, Kalles D, Skarmoutsou N, Martsoukou M, et al. Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy. Healthc Inform Res [Internet]. 2021 Jul 1 [cited 2022 Apr 16];27(3):214. Available from:
/pmc/articles/PMC8369050/
Feretzakis G, Loupelis E, Sakagianni A, Kalles D, Martsoukou M, Lada M, et al. Using Machine Learning Techniques to Aid Empirical Antibiotic Therapy Decisions in the Intensive Care Unit of a General Hospital in Greece. Antibiot 2020, Vol 9, Page 50
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0.
A submissão de um artigo ao Journal of Health Informatics é entendida como exclusiva e que não está sendo considerada para publicação em outra revista. A permissão dos autores para a publicação de seu artigo no J. Health Inform. implica na exclusiva autorização concedida aos editores para incluí-lo na revista. Ao submeter um artigo, ao autor será solicitada a permissão eletrônica de um Termo de Transferência de Direitos Autorais. Uma mensagem eletrônica será enviada ao autor correspondente confirmando o recibo do manuscrito e o aceite da Declaração de Direito Autoral.