Avaliação de variações da rede profunda EfficientNet em bases dermoscópicas

Autores

  • Newton Spolaôr Universidade Estadual do Oeste do Paraná
  • Huei Diana Lee UNIOESTE
  • Weber Shoity Resende Takaki Universidade Estadual do Oeste do Paraná
  • Claudio Saddy Rodrigues Coy UNICAMP
  • Feng Chung Wu UNIOESTE

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1337

Palavras-chave:

Inteligência Artificial, Informática Médica, Neoplasias Cutâneas

Resumo

Objetivo: Investigar configurações inéditas da rede profunda EfficientNet-B2 para a classificação de pequenas bases dermoscópicas. Método: Uma abordagem para (1) pré-processamento de imagens, (2) classificação com oito configurações para ajuste fino de uma EfficientNet-B2 pré-treinada, e (3) avaliação de classificadores com validação cruzada estratificada em três bases dermoscópicas. Resultados: Todos os modelos superaram uma referência experimental, e algumas diferenças estatísticas entre eles foram encontradas. A melhor rede obteve acurácia média de 98,33% no conjunto público PH2. Conclusão: Algumas variações inéditas da rede profunda foram consideradas competitivas perante referências recentes em classificação de dermoscopias.

Biografias Autor

Newton Spolaôr, Universidade Estadual do Oeste do Paraná

Doutor, Laboratório de Bioinformática, Universidade Estadual do Oeste do Paraná – LABI/UNIOESTE, Foz do Iguaçu (PR), Brasil.

Huei Diana Lee, UNIOESTE

Professor Associado-III Doutor, LABI/UNIOESTE, Foz do Iguaçu (PR), Brasil.

Weber Shoity Resende Takaki, Universidade Estadual do Oeste do Paraná

Doutor, Laboratório de Bioinformática, Universidade Estadual do Oeste do Paraná – LABI/UNIOESTE, Foz do Iguaçu (PR), Brasil.

Claudio Saddy Rodrigues Coy, UNICAMP

Professor Titular Doutor, Faculdade de Ciências Médicas, Universidade Estadual de Campinas – FCM/UNICAMP, Campinas (SP), Brasil.

Feng Chung Wu, UNIOESTE

Professor Associado-III Doutor, LABI/UNIOESTE, Foz do Iguaçu (PR), Brasil.

Referências

Malik FS, Yousaf MH, Sial HA, Viriri S. Exploring dermoscopic structures for melanoma lesions’ classification. Front Big Data. 2024;7:1366312.

Spolaôr N, Lee HD, Mendes AI, Nogueira CV, Parmezan ARS, Takaki WSR, et al. Fine-tuning pre-trained neural networks for medical image classification in small clinical datasets. Multimed Tools Appl. 2024;83(9):27305-29.

Balaha HM, Hassan AES. Skin cancer diagnosis based on deep transfer learning and sparrow search algorithm. Neural Comput Appl. 2023;35(1):815-53.

Instituto Nacional de Câncer (BR). Estimativa 2023: incidência de câncer no Brasil [Internet]. Rio de Janeiro: Instituto Nacional de Câncer; 2023 [citado 2024 Mai 22]. Disponível em: https://www.inca.gov.br/publicacoes/livros/estimativa-2023-incidencia-de-cancer-no-brasil.

Venugopal V, Raj NI, Nath MK, Stephen N. A deep neural network using modified EfficientNet for skin cancer detection in dermoscopic images. Decision Analytics Journal. 2023;8:100278.

Bansal P, Garg R, Soni P. Detection of melanoma in dermoscopic images by integrating features extracted using handcrafted and deep learning models. Comput Ind Eng. 2022;168:108060.

Hasan Rafi T, Shubair RM. A scaled-2D CNN for skin cancer diagnosis. In: Hallinan J, Chetty M, Heredia GR, et al., editors. Proceedings of the 18th IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology; 2021; Melbourne, Australia. [New York]: Curran Associates; 2021. p. 1-6.

Chollet F, Kalinowski T, Allaire JJ. Deep learning in R. 2nd ed. Shelter Island: Manning publications; 2022.

Liu XJ, Li Kl, Luan Hy, Wang Wh, Chen Zy. Few-shot learning for skin lesion image classification. Multimed Tools Appl. 2022;81(4):4979-90.

Tan M, Le QV. EfficientNet: Rethinking model scaling for convolutional neural networks. In: Chaudhuri K, Salakhutdinov R, editors. Proceedings of the 36th International Conference on Machine Learning; 2019; Long Beach, United States. [Brookline]: [Microtome Publishing]; 2019. p. 6105-14.

Jaisakthi SM, Mirunalini P, Aravindan C, Appavu R. Classification of skin cancer from dermoscopic images using deep neural network architectures. Multimed Tools Appl. 2023;82(10):15763-78.

Tajerian A, Kazemian M, Tajerian M, Akhavan Malayeri A. Design and validation of a new machine-learning-based diagnostic tool for the differentiation of dermatoscopic skin cancer images. PLoS One. 2023;18(4):1-17.

Papiththira S, Kokul T. Melanoma skin cancer detection using EfficientNet and channel attention module. In: Wijayakulasooriya J, editor. Proceedings of the 16th IEEE International Conference on Industrial and Information Systems; 2021; Kandy, Sri Lanka. [New York]: Curran Associates; 2021. p. 227-32.

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-scale machine learning on heterogeneous systems. Version 2.14 [software]. 2023 [cited 2024 May 22]. Available from: http://tensorflow.org.

Lee HD, Mendes AI, Spolaôr N, Oliva JT, Sabino Parmezan AR, Chung WF, et al. Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines. Knowl Based Syst. 2018;158:9-24.

Machado M, Pereira J, Fonseca-Pinto R. Classification of reticular pattern and streaks in dermoscopic images based on texture analysis. J Med Imaging. 2015;2(4):044503.

Argenziano G, Zalaudek I. Dermoscopy: a new perspective. Dermatol Pract Concept. 2011;1(1):57-8.

Boer A, Nischal K. A growing online resource for learning dermatology and dermatopathology. Indian J Dermatol Venereol Leprol. 2007;73(2):138-40.

Mendonça TF, Ferreira PM, Marçal ARS, Barata C, Marques JS, Rocha J, et al. PH2: A public database for the analysis of dermoscopic images. In: Celebi ME, Mendonça TF, Marques JS, editors. Dermoscopy Image Analysis. Boca Ratón: CRC Press; 2016. p. 419-40.

Codella N, Rotemberg V, Tschandl P, Celebi ME, Dusza S, Gutman D, et al. Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC). arXiv: 1902.03368 [Preprint]. 2019 [cited 2024 May 22]: [12 p.]. Available from: https://arxiv.org/abs/1902.03368.

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted residuals and linear bottlenecks. In: Brown MS, Morse B, Peleg S, editors. Proceedings of the 31st IEEE Conference on Computer Vision and Pattern Recognition; 2018; Salt Lake City, United States. [Washington]: IEEE Computer Society; 2018. p. 4510-20.

Witten IH, Frank E, Hall MA, Pal CJ. Data mining: Practical machine learning tools and techniques. 4th ed. Burlington: Morgan Kaufmann; 2016.

Velden BHM, Kuijf HJ, Gilhuijs KGA, Viergever MA. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med Image Anal. 2022;79:102470.

Chougrad H, Zouaki H, Alheyane O. Deep convolutional neural networks for breast cancer screening. Comput Methods Programs Biomed. 2018;157:19-30.

Publicado

2024-11-19

Como Citar

Spolaôr, N., Lee, H. D., Takaki, W. S. R., Coy, C. S. R., & Wu, F. C. (2024). Avaliação de variações da rede profunda EfficientNet em bases dermoscópicas. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1337

Artigos Similares

<< < 8 9 10 11 12 13 

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.

Artigos mais lidos do(s) mesmo(s) autor(es)