Semântica em prontuários eletrônicos para oncologia pediátrica: uma revisão integrativa

Autores

  • Elaine Barbosa de Figueiredo Professora, Serviço Nacional de Aprendizagem Comercial, São Paulo, SP, Brasil
  • Ferrucio de Franco Rosa Pesquisador, Centro de Tecnologia da Informação Renato Archer, Campinas, SP, Brasil e Professor, Centro Universitário Campo Limpo Paulista (UNIFACCAMP), Campo Limpo Paulista, SP, Brasil https://orcid.org/0000-0001-9504-496X
  • Ricardo Antônio Zanetti Pesquisador, Centro de Tecnologia da Informação Renato Archer, Campinas, SP, Brasil
  • Mariangela Dametto Pesquisador, Centro de Tecnologia da Informação Renato Archer, Campinas, SP, Brasil https://orcid.org/0000-0001-9803-1929
  • Rodrigo Bonacin Pesquisador, Centro de Tecnologia da Informação Renato Archer, Campinas, SP, Brasil e Professor, Centro Universitário Campo Limpo Paulista (UNIFACCAMP), Campo Limpo Paulista, SP, Brasil https://orcid.org/0000-0003-3441-0887

DOI:

https://doi.org/10.59681/2175-4411.v15.i2.2023.993

Palavras-chave:

Registros Eletrônicos de Saúde, Ontologias Biomédicas, Oncologia, Vocabulário Controlado

Resumo

Objetivo: Este estudo tem como objetivo analisar o uso de Sistemas de Organização do Conhecimento (SOC) como meio de enriquecimento do Prontuário Eletrônico do Paciente (PEP) para o domínio da oncologia pediátrica. Métodos: Foi aplicado um método de revisão integrativa da literatura. Foram realizadas três revisões de literatura, com busca de artigos de 2016 até Julho/2023 em PubMed, Scopus, IEEE Xplore e ACM Digital Library escritos em Inglês ou Português. Resultados: Foram analisados 52 artigos. Os resultados apontam os padrões adotados para a especificação de PEP e descrevem os SOC mais frequentemente usados com PEP na oncologia e também no domínio da oncologia pediátrica. Conclusão: Embora existam esforços para adotar padrões internacionais para PEP, vários projetos não fazem uso desses padrões. Os sistemas de PEPs para oncologia, em geral, fazem uso mais amplo de SOCs, enquanto na oncologia pediátrica o foco está nos relacionados à genética. Há necessidade de mais pesquisas para integrar PEP com padrões internacionais.

Referências

Farinelli F, Almeida MB. Semantic interoperability in healthcare information systems: A top-level ontology based solution. In: 4th Enterprise Engineering Working Conference (EEWC 2014), Doctoral consortium; Funchal, Madeira, Portugal; 2014.

Kruse CS, Stein A, Thomas H, Kaur H. The use of electronic health records to support population health: A systematic review of the literature. J Med Syst. 2018;42(11):214. DOI: 10.1007/s10916-018-1075-6. DOI: https://doi.org/10.1007/s10916-018-1075-6

Häyrinen K, Saranto K, Nykänen P. Definition, structure, content, use and impacts of electronic health records: A review of the research literature. Int J Med Inform. 2008;77(5):291-304. DOI: 10.1016/j.ijmedinf.2007.09.001. DOI: https://doi.org/10.1016/j.ijmedinf.2007.09.001

Hwang KH, Chung KI, Chung MA, Choi D. Review of semantically interoperable electronic health records for ubiquitous healthcare. Healthc Inform Res. 2010;16(1):1-5. DOI: 10.4258/hir.2010.16.1.1. DOI: https://doi.org/10.4258/hir.2010.16.1.1

Wollersheim D, Sari A, Rahayu W. Archetype-based electronic health records: A literature review and evaluation of their applicability to health data interoperability and access. Health Inf Manag J. 2009;38(2):7-17. DOI: 10.1177/183335830903800202. DOI: https://doi.org/10.1177/183335830903800202

Frade S, Freire SM, Sundvall E, Patriarca-Almeida JH, Cruz-Correia R. Survey of openEHR storage implementations. In: Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems. 2013; pp. 303-307. IEEE. DOI: 10.1109/CBMS.2013.6627806. DOI: https://doi.org/10.1109/CBMS.2013.6627806

Martins MC, Bulcão-Neto RF. Métodos de mapeamento entre arquétipos e ontologias: Uma revisão sistemática. J Health Informatics. 2019;11(1). URL: http://www.jhi-sbis.saude.ws/ojs-jhi/index.php/jhi-sbis/article/view/634.

Caetano CS, Orfão NH. Prontuário eletrônico do paciente em clínicas odontológicas: Uma revisão integrativa. J Health Informatics. 2021;13(3). URL: http://www.jhi-sbis.saude.ws/ojs-jhi/index.php/jhi-sbis/article/view/860.

Rangel AMP, Struchiner M. Prontuário eletrônico do paciente (pep) na educação médica: Benefícios e preocupações. J Health Informatics. 2021;13(2). URL: http://www.jhi-sbis.saude.ws/ojs-jhi/index.php/jhi-sbis/article/view/798. DOI: https://doi.org/10.1590/1981-5271v45.4-20210251

Kitchenham B. Procedures for performing systematic reviews. Joint Technical Report TR/SE-0401 and 0400011T.1, Keele University and National ICT Australia Ltd., 2004.

Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1-e34. DOI: 10.1016/j.jclinepi.2009.06.006. DOI: https://doi.org/10.1016/j.jclinepi.2009.06.006

Zhou Y, Liang H, Deng J. Bioinformatics analysis of competing endogenous RNA and screening of biomarkers in childhood Wilms tumor. In: Proceedings of the 2019 4th International Conference on Intelligent Information Processing, ICIIP 2019, p. 486-490. Association for Computing Machinery, New York, NY, USA. DOI: 10.1145/3378065.3378156. DOI: https://doi.org/10.1145/3378065.3378156

Zhang Z, Zhang J, Fan C, Tang Y, Deng L. KatzLGO: Large-scale prediction of lncRNA functions by using the Katz measure based on multiple networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2019;16(2):407-416. DOI: 10.1109/TCBB.2017.2704587. DOI: https://doi.org/10.1109/TCBB.2017.2704587

Ghaisani FD, Wasito I, Faturrahman M, Mufidah R. Deep belief networks and bayesian networks for prognosis of acute lymphoblastic leukemia. In: Proceedings of the International Conference on Algorithms, Computing and Systems, ICACS ’17, 2017; p. 102–106. Association for Computing Machinery, New York, NY, USA. DOI: 10.1145/3127942.3127947. DOI: https://doi.org/10.1145/3127942.3127947

Arora S, Szulzewsky F, Jensen M, Nuechterlein N, Pattwell SS, Holland EC. Visualizing genomic characteristics across an RNA-Seq based reference landscape of normal and neoplastic brain. Sci Rep. 2023;13:4228. https://doi.org/10.1038/s41598-023-31180-z DOI: https://doi.org/10.1038/s41598-023-31180-z

Lazzarini E, Silvestris DA, Benvenuto G, Osti D, Fattore L, Paterra R, et al. Genome-wide profiling of patient-derived glioblastoma stem-like cells reveals recurrent genetic and transcriptomic signatures associated with brain tumors. J Neurooncol. 2023 May;163(1):47-59. DOI: 10.1007/s11060-023-04287-6. DOI: https://doi.org/10.1007/s11060-023-04287-6

Major A, Cox SM, Volchenboum SL. Using big data in pediatric oncology: Current applications and future directions. Seminars in Oncology. 2020;47(1):56-64. DOI: https://doi.org/10.1053/j.seminoncol.2020.02.006. DOI: https://doi.org/10.1053/j.seminoncol.2020.02.006

Gupta S, Aitken JF, Bartels U, Brierley J, Dolendo M, Friedrich P, et al. Development of pediatric non-stage prognosticator guidelines for population-based cancer registries and updates to the 2014 Toronto pediatric cancer stage guidelines. Lancet Oncol. 2020;21(9):e444-e451. DOI: https://doi.org/10.1016/S1470-2045(20)30320-X

Schmiegelow K, Attarbaschi A, Barzilai S, Escherich G, Frandsen TL, Halsey C, et al. Ponte di Legno Toxicity Working Group: Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: A Delphi consensus. Lancet Oncol. 2016;17(6):e231-e239. DOI: https://doi.org/10.1016/S1470-2045(16)30035-3

Alkarkoukly S, Rajput AM. An openEHR Virtual Patient Template for Pancreatic Cancer. Stud Health Technol Inform. 2021;285:292–295. https://doi.org/10.3233/SHTI210618 DOI: https://doi.org/10.3233/SHTI210618

Banerjee I, Gensheimer MF, Wood DJ, Henry S, Aggarwal S, Chang DT, Rubin DL. Probabilistic Prognostic Estimates of Survival in Metastatic Cancer Patients (PPES-Met) Utilizing Free-Text Clinical Narratives. Scientific Reports. 2018;8(1). https://doi.org/10.1038/s41598-018-27946-5 DOI: https://doi.org/10.1038/s41598-018-27946-5

Bibault J-E, Zapletal E, Rance B, Giraud P, Burgun A. Labeling for big data in radiation oncology: The radiation oncology structures ontology. PLoS ONE. 2018;13(1). https://doi.org/10.1371/journal.pone.0191263 DOI: https://doi.org/10.1371/journal.pone.0191263

Chan LW, Wong SC, Chiu KW. Ontological features of electronic health records reveal distinct association patterns in liver cancer. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2016; pp. 1051-1053. DOI: 10.1109/BIBM.2016.7822667. DOI: https://doi.org/10.1109/BIBM.2016.7822667

Chan LWC, Cesar Wong SC, Chiau CC, Chan T-M, Tao L, Feng J, Chiu KWH. Association Patterns of Ontological Features Signify Electronic Health Records in Liver Cancer. Journal of Healthcare Engineering. 2017. https://doi.org/10.1155/2017/6493016 DOI: https://doi.org/10.1155/2017/6493016

Chang KP, Chu YW, Wang J. Analysis of hormone receptor status in primary and recurrent breast cancer via data mining pathology reports. Open Med. 2019;14(1):91-98. DOI: doi:10.1515/med-2019-0013. DOI: https://doi.org/10.1515/med-2019-0013

Chen A, Huang R, Wu E, Han R, Wen J, Li Q, Zhang Z, Shen B. The Generation of a Lung Cancer Health Factor Distribution Using Patient Graphs Constructed From Electronic Medical Records: Retrospective Study. J Med Internet Res. 2022;24(11):e40361. https://doi.org/10.2196/40361 DOI: https://doi.org/10.2196/40361

Chiudinelli L, Dagliati A, Tibollo V, Albasini S, Geifman N, Peek N, et al. Mining post-surgical care processes in breast cancer patients. Artif Intell Med. 2020;105:101855. DOI: https://doi.org/10.1016/j.artmed.2020.101855. DOI: https://doi.org/10.1016/j.artmed.2020.101855

Dugas M, Meidt A, Neuhaus P, Storck M, Varghese J. OdMediT: Uniform semantic annotation for data integration in medicine based on a public metadata repository. BMC Med Res Methodol. 2016;16(1):65. DOI: 10.1186/s12874-016-0164-9. DOI: https://doi.org/10.1186/s12874-016-0164-9

de Figueiredo EB, Dametto M, Rosa FF, Bonacin R. A Multidimensional Framework for Semantic Electronic Health Records in the Oncology Domain. In: 2021 IEEE 30th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), Bayonne, France; 2021. pp. 165-170. https://doi.org/10.1109/WETICE53228.2021.00041 DOI: https://doi.org/10.1109/WETICE53228.2021.00041

Frid S, Expósito MA, Grau-Corral I, Amat-Fernandez C, Mateu M, Duran X, Lozano-Rubí R. Successful Integration of EN/ISO 13606-Standardized Extracts From a Patient Mobile App Into an Electronic Health Record: Description of a Methodology. JMIR Med Inform. 2022;10(10):e40344. https://doi.org/10.2196/40344 DOI: https://doi.org/10.2196/40344

Hanauer DA, Barnholtz-Sloan JS, Beno MF, Del Fiol G, Durbin EB, Gologorskaya O, Harris D, Harnett B, Kawamoto K, May B, Meeks E, Pfaff E, Weiss J, Zheng K. Electronic Medical Record Search Engine (EMERSE): An Information Retrieval Tool for Supporting Cancer Research. JCO Clinical Cancer Informatics. 2020;4:454–463. https://doi.org/10.1200/CCI.19.00134 DOI: https://doi.org/10.1200/CCI.19.00134

He Z, Keloth VK, Chen Y, Geller J. Extended analysis of topological-pattern based ontology enrichment. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2018; pp. 1641-1648. DOI: 10.1109/BIBM.2018. DOI: https://doi.org/10.1109/BIBM.2018.8621564

Hochheiser H, Castine M, Harris D, Savova G, Jacobson RS. An information model for computable cancer phenotypes. BMC Med Inform Decis Mak. 2016;16(1):121.DOI:10.1186/s12911-016-0358-4. DOI: https://doi.org/10.1186/s12911-016-0358-4

Hong N, Zhang N, Wu H, Lu S, Yu Y, Hou L, et al. Preliminary exploration of survival analysis using the OHDSI common data model: a case study of intrahepatic cholangiocarcinoma. BMC Med Inform Decis Mak. 2018;18(5):116. DOI: 10.1186/s12911-018-0686-7. DOI: https://doi.org/10.1186/s12911-018-0686-7

Iatraki G, Kondylakis H, Koumakis L, Chatzimina M, Kazantzaki E, Marias K, et al. Personal health information recommender: implementing a tool for the empowerment of cancer patients. Ecancermedicalscience. 2018;12:851. DOI: https://doi.org/10.3332/ecancer.2018.851

Koopman B, Zuccon G, Nguyen A, Bergheim A, Grayson N. Extracting cancer mortality statistics from death certificates: A hybrid machine learning and rule-based approach for common and rare cancers. Artif Intell Med. 2018;89:1-9. DOI: https://doi.org/10.1016/j.artmed.2018.04.011. DOI: https://doi.org/10.1016/j.artmed.2018.04.011

Kralj J, Robnik-Šikonja M, Lavrač N. NetSDM: Semantic data mining with network analysis. J Mach Learn Res. 2019;20(1):1086-1135.

Legaz-García MC, Martínez-Costa C, Menárguez-Tortosa M, Fernández-Breis JT. A semantic web-based framework for the interoperability and exploitation of clinical models and EHR data. Knowledge-Based Systems. 2016;105:175-189. DOI: https://doi.org/10.1016/j.knosys.2016.05.016. DOI: https://doi.org/10.1016/j.knosys.2016.05.016

Li Y, Zhu Z, Wu H, Ding S, Zhao Y. CCAE: Cross-field categorical attributes embedding for cancer clinical endpoint prediction. Artif Intell Med. 2020;107:101915. DOI: https://doi.org/10.1016/j.artmed.2020.101915. DOI: https://doi.org/10.1016/j.artmed.2020.101915

Maggi N, Magnoni LD, Ruggiero C, Gazzarata R, Giacomini M. Information technology system including patient-generated health data for cancer clinical care and research. Stud Health Technol Inform. 2019;261:289-293.

Malty AM, Jain SK, Yang PC, Harvey K, Warner JL. Computerized approach to creating a systematic ontology of hematology/oncology regimens. JCO Clin Cancer Informatics. 2018;(2):1-11. DOI: 10.1200/CCI.17.00142. DOI: https://doi.org/10.1200/CCI.17.00142

Meng J, Zhang R, Chen D. Utilizing narrative text from electronic health records for early warning model of chronic disease. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2018; pp. 4210-4215. DOI: 10.1109/SMC.2018.00713. DOI: https://doi.org/10.1109/SMC.2018.00713

Messaoudi R, Jaziri F, Mtibaa A, Grand-Brochier M, Ali HM, Amouri A, et al. Ontology-based approach for liver cancer diagnosis and treatment. J Digit Imaging. 2019;32(1):116-130. DOI: 10.1007/s10278-018-0115-6. DOI: https://doi.org/10.1007/s10278-018-0115-6

Najafabadipour M, Zanin M, Rodríguez-González A, Torrente M, Nuñez García B, Cruz Bermudez JL, Provencio M, Menasalvas E. Reconstructing the patient’s natural history from electronic health records. Artificial Intelligence in Medicine. 2020;105. https://doi.org/10.1016/j.artmed.2020.101860 DOI: https://doi.org/10.1016/j.artmed.2020.101860

Rani GJJ, Gladis D, Mammen JJ. Snomed ct annotation for improved pathological decisions in breast cancer domain. Int J Recent Technol Eng. 2019;8(3):8400-8406. DOI: https://doi.org/10.35940/ijrte.C6519.098319

Rubinstein SM, Yang PC, Cowan AJ, Warner JL. Standardizing Chemotherapy Regimen Nomenclature: A Proposal and Evaluation of the HemOnc and National Cancer Institute Thesaurus Regimen Content. JCO Clinical Cancer Informatics. 2020;3(4):60–70. https://doi.org/10.1200/CCI.19.00122 DOI: https://doi.org/10.1200/CCI.19.00122

Sharma DK, Solbrig HR, Tao C, Weng C, Chute CG, Jiang G. Building a semantic web-based metadata repository for facilitating detailed clinical modeling in cancer genome studies. J Biomed Semantics. 2017;8(1):19. DOI: 10.1186/s13326-017-0130-4. DOI: https://doi.org/10.1186/s13326-017-0130-4

Sweidan S, El-Bakry H, Sabbeh SF. Construction of liver fibrosis diagnosis ontology from fuzzy extended ER modeling: Construction of FibronTo from an EER model. Int J Decision Support Syst Technol (IJDSST). 2020;12(1):46-69. DOI: 10.4018/IJDSST.2020010103. DOI: https://doi.org/10.4018/IJDSST.2020010103

Wu Y, Warner JL, Wang L, Jiang M, Xu J, Chen Q, et al. Discovery of noncancer drug effects on survival in electronic health records of patients with cancer: A new paradigm for drug repurposing. JCO Clin Cancer Inform. 2019;(3):1-9. DOI: 10.1200/CCI.19.00001. PMID: 31141421. DOI: https://doi.org/10.1200/CCI.19.00001

Zexian Z, Ankita R, Xiaoyu L, Sasa E, Susan C, Seema K, et al. Using clinical narratives and structured data to identify distant recurrences in breast cancer. In: 2018 IEEE International Conference on Healthcare Informatics (ICHI). 2018; pp. 44-52. DOI: 10.1109/ICHI.2018.00013. DOI: https://doi.org/10.1109/ICHI.2018.00013

Zong N, Ngo V, Stone DJ, Wen A, Zhao Y, Yu Y, Liu S, Huang M, Wang C, Jiang G. Leveraging Genetic Reports and Electronic Health Records for the Prediction of Primary Cancers: Algorithm Development and Validation Study. JMIR Med Inform. 2021;9(5):e23586. https://doi.org/10.2196/23586 DOI: https://doi.org/10.2196/23586

Chen ZF, Wu LZ, Chen ZT, Su LJ, Fu CJ. The potential mechanisms of neuroblastoma in children based on bioinformatics big data. Transl Pediatr. 2022;11(12):1908–1919. https://doi.org/10.21037/tp-22-504 DOI: https://doi.org/10.21037/tp-22-504

Dawidowska M, Jaksik R, Drobna M, Szarzyńska-Zawadzka B, Kosmalska M, Łukasz Sędek, et al. Comprehensive investigation of mirnome identifies novel candidate miRNA-mRNA interactions implicated in T-cell acute lymphoblastic leukemia. Neoplasia. 2019;21(3):294-310. DOI: https://doi.org/10.1016/j.neo.2019.01.004. DOI: https://doi.org/10.1016/j.neo.2019.01.004

Fonseka P, Liem M, Ozcitti C, Adda CG, Ang CS, Mathivanan S. Exosomes from N-Myc amplified neuroblastoma cells induce migration and confer chemoresistance to non-N-Myc amplified cells: Implications of intra-tumour heterogeneity. J Extracell Vesicles. 2019;8(1):1597614. DOI: https://doi.org/10.1080/20013078.2019.1597614. DOI: https://doi.org/10.1080/20013078.2019.1597614

Guo K, Qian K, Shi Y, Sun T, Chen L, Mei D, Dong K, Gu S, Liu J, Lv Z, Wang Z. Clinical and Molecular Characterizations of Papillary Thyroid Cancer in Children and Young Adults: A Multicenter Retrospective Study. Thyroid. 2021;31(11):1693–1706. https://doi.org/10.1089/thy.2021.0003 DOI: https://doi.org/10.1089/thy.2021.0003

Huang P, Guo YD, Zhang HW. Identification of hub genes in pediatric medulloblastoma by multiple-microarray analysis. Journal of Molecular Neuroscience. 2020; 70(4), 522–531. DOI: https://doi.org/10.1007/s12031-019-01451-4. DOI: https://doi.org/10.1007/s12031-019-01451-4

Liu X, Hu A.X., Zhao J.L., Chen F.L. Identification of key gene modules in human osteosarcoma by co-expression analysis weighted gene co-expression network analysis (WGCNA). Journal of Cellular Biochemistry. 2017; 118(11), 3953–3959. DOI: https://doi.org/10.1002/jcb.26050. DOI: https://doi.org/10.1002/jcb.26050

Luo X, Deng C, Liu F, Liu X, Lin T, He D, et al. hnRNPL promotes Wilms tumor progression by regulating the p53 and Bcl2 pathways. Onco Targets Ther. 2019;12:4269-4279. DOI: https://doi.org/10.2147/OTT.S203046

Mousavian Z, Nowzari-Dalini A, Stam R, Rahmatallah Y, Masoudi-Nejad A. Network-based expression analysis reveals key genes related to glucocorticoid resistance in infant acute lymphoblastic leukemia. Cell Oncol. 2017;40(1):33-45. DOI: 10.1007/s13402-016-0303-7. DOI: https://doi.org/10.1007/s13402-016-0303-7

Núñez-Enríquez JC, Bárcenas-López DA, Hidalgo-Miranda A, Jiménez-Hernández E, Bekker-Méndez VC, Flores-Lujano J, et al. Gene expression profiling of acute lymphoblastic leukemia in children with very early relapse. Arch Med Res. 2020;47(8):644-655. DOI: https://doi.org/10.1016/j.arcmed.2016.12.005. DOI: https://doi.org/10.1016/j.arcmed.2016.12.005

Ohmura S, Marchetto A, Orth MF, et al. Translational evidence for RRM2 as a prognostic biomarker and therapeutic target in Ewing sarcoma. Mol Cancer. 2021;20:97. https://doi.org/10.1186/s12943-021-01393-9 DOI: https://doi.org/10.1186/s12943-021-01393-9

Olsson M, Beck S, Kogner P, Martinsson T, Carén H. Genome-wide methylation profiling identifies novel methylated genes in neuroblastoma tumors. Epigenetics. 2016;11(1):74–84. https://doi.org/10.1080/15592294.2016.1138195 DOI: https://doi.org/10.1080/15592294.2016.1138195

Shen H, Wang W, Ni B, Zou Q, Lu H, Wang Z. Exploring the molecular mechanisms of osteosarcoma by the integrated analysis of mRNAs and miRNA microarrays. Int J Mol Med. 2018;42(1):21-30. DOI: 10.3892/ijmm.2018.3594. DOI: https://doi.org/10.3892/ijmm.2018.3594

Sun L, Li J, Yan B. Gene expression profiling analysis of osteosarcoma cell lines. Mol Med Rep. 2015;12(3):4266-4272. DOI: 10.3892/mmr.2015.3958. DOI: https://doi.org/10.3892/mmr.2015.3958

Tomar AK, Agarwal R, Kundu B. Most variable genes and transcription factors in acute lymphoblastic leukemia patients. Interdiscip Sci. 2019;11(4):668-678. DOI: 10.1007/s12539-019-00325-y. DOI: https://doi.org/10.1007/s12539-019-00325-y

Xu N, Yu Y, Duan C, Wei J, Sun W, Jiang C, Jian B, Cao W, Jia L, Ma X. Quantitative proteomics identifies and validates urinary biomarkers of rhabdomyosarcoma in children. Clin Proteomics. 2023;20:10. https://doi.org/10.1186/s12014-023-09401-4 DOI: https://doi.org/10.1186/s12014-023-09401-4

Yan C, Wang Y, Wang Q, Feng X, Wang L, Bu Z, et al. Identification of key genes and pathways in Ewing’s sarcoma using bioinformatics analysis. J BUON. 2018;23(5):1472-1480.

Zhang F, Zeng L, Cai Q, Xu Z, Liu R, Zhong H, et al. Comprehensive analysis of a long noncoding RNA-associated competing endogenous RNA network in Wilms tumor. Cancer Control. 2020;27(2). DOI: 10.1177/1073274820936991. DOI: https://doi.org/10.1177/1073274820936991

Zhong X, Liu Y, Liu H, Zhang Y, Wang L, Zhang H. Identification of potential prognostic genes for neuroblastoma. Front Genet. 2018;9:589. DOI: https://doi.org/10.3389/fgene.2018.00589

Gupta S, Aitken JF, Bartels U, Brierley JD, Dolendo M, Friedrich P, et al. Pediatric cancer stage in population-based cancer registries: The Toronto consensus principles and guidelines. Lancet Oncol. 2016;17(4):e163-e172. DOI: https://doi.org/10.1016/S1470-2045(15)00539-2

Foroughi Pour A, Dalton LA. Optimal Bayesian filtering for biomarker discovery: Performance and robustness. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2020;17(1):250-263. DOI: 10.1109/TCBB.2018.2858814. DOI: https://doi.org/10.1109/TCBB.2018.2858814

Downloads

Publicado

18-10-2023

Como Citar

Figueiredo, E. B. de, Rosa, F. de F., Zanetti, R. A., Dametto, M., & Bonacin, R. (2023). Semântica em prontuários eletrônicos para oncologia pediátrica: uma revisão integrativa. Journal of Health Informatics, 15(2), 61–69. https://doi.org/10.59681/2175-4411.v15.i2.2023.993

Edição

Seção

Artigo de Revisão