Probabilistic modeling of time to first Covid-19 infection in a city connected to another in exponential growth infections

Authors

  • Thiago Santos Silva Universidade Federal do Espírito Santo
  • Patrick Ciarelli Universidade Federal do Espírito Santo
  • Jugurta Montalvão Universidade Federal de Sergipe
  • Evandro Salles Universidade Federal do Espírito Santo

DOI:

https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1089

Keywords:

Covid-19, Infectious Disease Transmission, Disease Hot Spot

Abstract

After the firsts Covid-19 infection in Brazil, in which initial cases occurred in some metropolises, its regional spread continued to smaller cities connected to these centers, in a process of internalization of infections. Models that explain this phenomenon can help in preparing necessary actions to contain new cases. Therefore, the present work proposes a novel random variable that models probability of delay, in days, of first infection in a smaller city coupled to an already infected center, a city with community transmission of infection. This novel variable and its probability distribution are formulated under general theoretical assumptions, while a methodology of its use is exemplified in the real scenario of the cities of Espírito Santo state - Brazil, in which the results corroborate the utility of the novel variable in risk assessment of first infection by import.

Author Biographies

Thiago Santos Silva, Universidade Federal do Espírito Santo

Departamento de Engenharia Elétrica, Universidade Federal do Espírito Santo - UFES-ES, Vitória (ES), Brasil.

Patrick Ciarelli, Universidade Federal do Espírito Santo

Departamento de Engenharia Elétrica, Universidade Federal do Espírito Santo - UFES-ES, Vitória (ES), Brasil.

Jugurta Montalvão, Universidade Federal de Sergipe

Departamento de Engenharia Elétrica, Universidade Federal de Sergipe - UFS-SE, São Cristóvão (SE), Brasil.

Evandro Salles, Universidade Federal do Espírito Santo

Departamento de Engenharia Elétrica, Universidade Federal do Espírito Santo - UFES-ES, Vitória (ES), Brasil.

References

Hethcote HW. Qualitative analyses of communicable disease models. Math Biosci. 1976;28(3–4):335–56.

Kermack WO, McKendrick AG. Contributions to the mathematical theory of epidemics–I. 1927. Bull Math Biol. 1991;53(1–2):33–55.

Pollicott M, Wang H, Weiss H. Recovering the time-dependent transmission rate from infection data. Available ArXiv. 2009;9073529.

Marinov TT, Marinova RS. Dynamics of COVID-19 using inverse problem for coefficient identification in SIR epidemic models. Chaos Solitons Fractals X. 2020;5:100041.

Reiner R et al. Modeling COVID-19 scenarios for the United States. Nat Med. 2020;

Costa GS, Cota W, Ferreira SC. Metapopulation modeling of covid-19 advancing into the countryside: an analysis of mitigation strategies for Brazil. medRxiv. 2020;

Kraemer MU, Yang CH, Gutierrez B, Wu CH, Klein B, Pigott DM, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science. 2020;368(6490):493–7.

Ferreira S. Sobre a eficiência de barreiras sanitárias restritivas para conter o avanço da COVID-19: Uma modelagem matemática simples. 2020;

Instituto Brasileiro de Geografia e Estatística. Arranjos Populacionais e Concentrações Urbanas do Brasil | IBGE [Internet]. [citado 4 de agosto de 2022]. Disponível em: https://www.ibge.gov.br/geociencias/organizacao-do-territorio/divisao-regional/15782-arranjos-populacionais-e-concentracoes-urbanas-do-brasil.html?edicao=15944&t=acesso-ao-produto

Painel Coronavírus. Coronavírus Brasil [Internet]. [citado 29 de julho de 2022]. Disponível em: https://covid.saude.gov.br/

Alimohamadi Y, Taghdir M, Sepandi M. Estimate of the basic reproduction number for COVID-19: a systematic review and meta-analysis. J Prev Med Pub Health. 2020;53(3):151.

Published

2023-07-20

How to Cite

Silva, T. S., Ciarelli, P., Montalvão, J., & Salles, E. (2023). Probabilistic modeling of time to first Covid-19 infection in a city connected to another in exponential growth infections. Journal of Health Informatics, 15(Especial). https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1089

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.