Assessment of ensemble learning application in predicting body fat percentage in adolescents
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1282Keywords:
Ensemble Learning, Body Fat, Nutritional TransitionAbstract
Objective: The present study aimed to estimate the percentage of body fat in adolescents from São Luís/MA using machine learning techniques. Method: Ensemble techniques with the algorithms Stacking, Bagging, and AdaBoost were employed. Results: The findings revealed that the Stacking model demonstrated the best performance, with lower mean squared error (MSE) and higher coefficient of determination (R²), indicating its effectiveness in explaining the data variability. Conclusion: Stacking is the most suitable algorithm for predicting body fat index in adolescents as it adapted well to the data due to its robustness, reduction of overfitting, and high interpretative power.
References
Sousa Junior CM. Desenvolvimento de um sistema para triagem de adolescentes obesos utilizando variáveis clínicas [Tese]. São Luís: UFMA; 2019. 68 p.
Fonseca VM, Sichieri R, Veiga GV. Fatores associados à obesidade em adolescentes. Rev Saúde Pública. 1998;32:541-9.
Mattar R, et al. Obesidade e gravidez. Rev Bras Ginecol Obstet. 2009;31:107-110.
Wanderley EN, Ferreira VA. Obesidade: uma perspectiva plural. Ciência Saúde Colet. 2010;15:185-194.
Rezende FAC, et al. Aplicabilidade do índice de massa corporal na avaliação da gordura corporal. Rev Bras Med Esporte. 2010;16:90-94.
Zeballos L, et al. Avaliação da composição corporal total e segmentar de alunos do curso de nutrição pela densitometria por dupla emissão de raios-x. RBONE-Rev Bras Obes Nutr Emagrecimento. 2020;14(89):914-920.
Britto EP, Mesquita ET. Bioimpedância elétrica aplicada à insuficiência cardíaca. 2008.
Lopes NS. Modelos de classificação de risco de crédito para financiamentos imobiliários: regressão logística, análise discriminante, árvores de decisão, bagging e boosting. 2011.
Breiman L. Bagging predictors. Mach Learn. 1996;24:123-140.
Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29(5):1189-1232.
Freund Y, Schapire RE. Experiments with a new boosting algorithm. In: International Conference on Machine Learning. 1996. pp. 148-156.
Schapire RE. The Boosting Approach to Machine Learning: An Overview. In: Nonlinear Estimation and Classification. Springer, New York, NY; 2012. pp. 149-171.
Ting KM, Witten IH. Issues in stacked generalization. J Artif Intell Res. 1999;10:271-289.
Oliveira LM. Classificação de dados sensoriais de cafés especiais com resposta multiclasse via Algoritmo Boosting e Bagging. 2016.
Pinho CMA, et al. Análise de textos com aplicação de técnicas de inteligência artificial: estudo comparativo para classificação de fuga ao tema em redações. 2021.
Oliveira Filho IL. Algoritmo papílio como método de proteção de templates para aumentar a segurança em sistemas de identificação biométricos. 2014.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Submission of a paper to Journal of Health Informatics is understood to imply that it is not being considered for publication elsewhere and that the author(s) permission to publish his/her (their) article(s) in this Journal implies the exclusive authorization of the publishers to deal with all issues concerning the copyright therein. Upon the submission of an article, authors will be asked to sign a Copyright Notice. Acceptance of the agreement will ensure the widest possible dissemination of information. An e-mail will be sent to the corresponding author confirming receipt of the manuscript and acceptance of the agreement.