Evaluating of large language models in extracting clinical information

Authors

  • Carlos Eduardo Rodrigues Mello Pontifica Universidade Católica do Paraná
  • Elisa Terumi Rubel Schneider Instituto do Coração
  • Lucas Emanuel Silva e Oliveira Comsentimento
  • Juliana Nabbouh do Nascimento PUC-PR
  • Yohan Bonescki Gumie HC FMUSP
  • Isabela Fontes de Araújo PUC-PR
  • Claudia Moro PUC-PR

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1306

Keywords:

Syndrome, Signs and Symptoms, Machine Learning, Natural Language Processing

Abstract

Objective: investigate the effectiveness of large language models (LLMs) in named entity recognition (NER) in clinical notes in Brazilian Portuguese. Method: We evaluated the NER task in 30 clinical notes using the metrics and methods of precision, recall, and F-score. In the experiment conducted, we compared the performance of the models GPT-3.5, Gemini, Llama-3, and Sabiá-2 in extracting the entities "Signs or Symptoms," "Diseases or Syndromes," and "Negated Data." Results: We found that the Llama-3 model showed superior performance, especially in sensitivity, achieving an F-score of 0.538. GPT-3.5 demonstrated balanced performance, while Gemini showed higher precision but lower sensitivity. Conclusion: Our results indicate that the choice of model depends on the appropriate weighting of these factors concerning the individual requirements of each clinical application.

Author Biographies

Carlos Eduardo Rodrigues Mello, Pontifica Universidade Católica do Paraná

Graduando em Ciência da Computação, Pontifica Universidade Católica do Paraná (PUCPR), Curitiba, PR, Brasil 

Elisa Terumi Rubel Schneider, Instituto do Coração

Doutora em Informática, Pesquisadora, Instituto do Coração (HC FMUSP), São Paulo - SP, Brasil 

Lucas Emanuel Silva e Oliveira, Comsentimento

Doutor em Tecnologia em Saúde, Comsentimento, Curitiba, PR, Brasil 

Juliana Nabbouh do Nascimento, PUC-PR

Graduanda de Engenharia Biomédica - PUCPR, Curitiba, PR, Brasil

Yohan Bonescki Gumie, HC FMUSP

Doutor em Tecnologia em Saúde, Pesquisador Instituto do Coração (HC FMUSP), São Paulo - SP, Brasil

Isabela Fontes de Araújo, PUC-PR

Mestranda PPGTS/PUCPR, Curitiba, PR, Brasil 

Claudia Moro, PUC-PR

Doutora Engenharia Elétrica, Professora Titular - PPGTS/PUCPR, Curitiba, PR, Brasil 

References

Yadav, P., Steinbach, M., Kumar, V., & Simon, G. (2018). Mining Electronic Health Records (EHRs). ACM Computing Surveys, 50(6), 1–40. doi:10.1145/3127881

Jensen, P. B., Jensen, L. J., & Brunak, S. (2012). Mining electronic health records: towards better research applications and clinical care. Nature Reviews Genetics, 13(6), 395–405. doi:10.1038/nrg3208

Assale, M., Dui, L. G., Cina, A., Seveso, A., & Cabitza, F. (2019). The Revival of the Notes Field: Leveraging the Unstructured Content in Electronic Health Records. Frontiers in Medicine, 6. doi:10.3389/fmed.2019.00066

Sun, Peng et al. "An overview of named entity recognition." 2018 International Conference on Asian Language Processing (IALP). IEEE, 2018. p. 273-278.

DA SILVA, Diego Pinheiro et al. "Exploring named entity recognition and relation extraction for ontology and medical records integration". Journal of Informatics in Medicine Unlocked vol. 43 (2023): 2352-9148. doi:10.1016/j.imu.2023.101381

Liu, Zhengliang, et al. "Deid-gpt: Zero-shot medical text de-identification by gpt-4." arXiv preprint arXiv:2303.11032 (2023).

Schneider, Elisa Terumi Rubel et al. "BioBERTpt: a portuguese neural language model for clinical Named Entity Recognition." Proceedings of the 3rd Clinical Natural Language Processing Workshop. 19 November 2020, 2020.

Schneider, E. T. R, et al., "CardioBERTpt: Transformer-based Models for Cardiology Language Representation in Portuguese," 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS), L'Aquila, Italy, 2023, pp. 378-381, doi: 10.1109/CBMS58004.2023.00247.

Oliveira, L.E.S.e., Peters, A.C., da Silva, A.M.P. et al.. SemClinBr - a multi-institutional and multi-specialty semantically annotated corpus for Portuguese clinical NLP tasks. J Biomed Semantics. 2022;13(1):13. Published 2022 May 8. doi:10.1186/s13326-022-00269-1

https://openai.com/index/chatgpt/ [Internet]. San Francisco: OpenAI; c2024 [cited 2024 May 31]. Available from: https://openai.com/index/chatgpt/.

Apresentando o Gemini: nosso maior e mais hábil modelo de IA. [Internet]. California: Google; c2024 [cited 2024 May 31]. Available from: https://blog.google/intl/pt-br/novidades/tecnologia/apresentando-o-gemini-nosso-maior-e-mais-habil-modelo-de-ia/#mensagem-sundar.

https://llama.meta.com/llama3/ [Internet]. California: Meta; c2024 [cited 2024 May 31]. Available from: https://llama.meta.com/llama3/

https://www.maritaca.ai/sabia-2 Internet]. São Paulo: Maritaca AI; c2024 [cited 2024 May 31]. Available from: https://www.maritaca.ai/sabia-2

GE, Yao et al. "Few-shot learning for medical text: A review of advances, trends, and opportunities". Journal of Biomedical Informatics vol. 144 (2023): 1532-0464. doi: 10.1016/ j.jbi.2023.104458

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: analyzing text with the natural language toolkit. " O’Reilly Media, Inc."

Published

2024-11-19

How to Cite

Mello, C. E. R., Schneider, E. T. R., Silva e Oliveira, L. E., do Nascimento, J. N., Gumie, Y. B., de Araújo, I. F., & Moro, C. (2024). Evaluating of large language models in extracting clinical information. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1306

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)