Selección de agrupamiento de genes para la predicción de la supervivencia en pacientes con cáncer de mama
DOI:
https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1103Palabras clave:
Aprendizaje Automático, Cáncer de mama, Expresión génicaResumen
La estratificación del riesgo basada en datos moleculares para predecir la progresión o el resultado del cáncer es una tarea importante para respaldar la toma de decisiones clínicas en oncología. En este trabajo, usamos el modelo de Cox y K-means para definir una firma basada en la expresión génica de pronóstico. Nuestro enfoque logró un C-index (0,8341) y supera al modelo de Cox utilizando solo datos clínicos (0,6348). En general, esto demuestra que la firma genética encontrada está relacionada con la evolución del estado clínico de la paciente, detectando características moleculares relacionadas con el pronóstico en cáncer de mama.
Citas
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F.: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 71(3), 209–249 (2021).
Lei, S., Zheng, R., Zhang, S., Chen, R., Wang, S., Sun, K., Zeng, H., Wei, W., He, J.: Breast cancer incidence and mortality in women in china: temporal trends and projections to 2030. Cancer biology & medicine 18(3), 900–909 (2021).
Vogelstein, B., Kinzler, K.W.: Cancer genes and the pathways they control. Nat Med 10(8), 789–799 (Aug 2004)
Mardis, E.R.: The Impact of Next-Generation Sequencing on Cancer Genomics: From Discovery to Clinic. Cold Spring Harb Perspect Med 9(9) (09 2019).
Abadi, A., Yavari, P., Dehghani-Arani, M., Alavi-Majd, H., Ghasemi, E., Aman- pour, F., Bajdik, C.: Cox models survival analysis based on breast cancer treat- ments. Iranian journal of cancer prevention 7(3), 124 (2014)
Bellera, C.A., MacGrogan, G., Debled, M., de Lara, C.T., Brouste, V., Mathoulin- P ́elissier, S.: Variables with time-varying effects and the cox model: Some statistical concepts illustrated with a prognostic factor study in breast cancer. BMC Medical Research Methodology 10(1) (Mar 2010).
Chen, Y., Zeng, W., Zhu, D.: Cox regression analysis on the survival rate of breast cancer patients. In: Yin, H.M., Chen, K., Meˇstrovi ́c, R., Oliveira, T.A., Lin, N. (eds.) International Conference on Statistics, Applied Mathematics, and Computing Science (CSAMCS 2021). vol. 12163, pp. 195 – 203. International Society for Optics and Photonics, SPIE (2022).
Husain, H., Thamrin, S.A., Tahir, S., Mukhlisin, A., Apriani, M.M.: The appli- cation of extended cox proportional hazard method for estimating survival time of breast cancer. Journal of Physics: Conference Series 979, 012087 (mar 2018).
Jiang, Q.: Cancer Classification and Gene Selection with Machine Learning Method, p. 122–127. Association for Computing Machinery, New York, NY, USA (2020)
Wang, W., Liu, W.: Integration of gene interaction information into a reweighted Lasso-Cox model for accurate survival prediction. Bioinformatics 36(22-23), 5405– 5414 (12/2020).
Xie, G., Dong, C., Kong, Y., Zhong, J.F., Li, M., Wang, K.: Group lasso regularized deep learning for cancer prognosis from multi-omics and clinical features. Genes 10(3) (2019).
Zeng, D., Zhou, R., Yu, Y., Luo, Y., Zhang, J., Sun, H., Bin, J., Liao, Y., Rao, J., Zhang, Y., Liao, W.: Gene expression profiles for a prognostic im-
Genes clustering selection to survival prediction in breast cancer patients 13 munoscore in gastric cancer. British Journal of Surgery 105(10), 1338–1348 (04 2018).
De Bin, R.: Boosting in cox regression: A comparison between the likelihoodbased and the model-based approaches with focus on the r-packages coxboost and mboost. Comput. Stat. 31(2), 513–531 (jun 2016).
Ching, T., Zhu, X., Garmire, L.X.: Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data. PLOS Computational Biology 14(4), 1–18 (04 2018).
Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S.: Random survival forests. The Annals of Applied Statistics 2(3), 841 – 860 (2008).
Network, T.C.G.A.: Comprehensive molecular portraits of human breast tumours. Nature 490(7418), 61–70 (Oct 2012)
Harrell, Frank E., J., Califf, R.M., Pryor, D.B., Lee, K.L., Rosati, R.A.: Evaluating the Yield of Medical Tests. JAMA 247(18), 2543–2546 (05 1982).
M ́enard, S., Fortis, S., Castiglioni, F., Agresti, R., Balsari, A.: HER2 as a prognostic factor in breast cancer. Oncology 61 Suppl 2, 67–72 (2001)
Guo, C., Liu, S., Wang, J., Sun, M.Z., Greenaway, F.T.: Actb in cancer. Clinica chimica acta 417, 39–44 (2013)
Ke H, Zhao L, Zhang H, et al. Loss of TDP43 inhibits progression of triple-negative breast cancer in coordination with SRSF3. Proc Natl Acad Sci U S A. 2018;115(15):E3426-E3435. doi:10.1073/pnas.1714573115
Dumax-Vorzet, A., Roboti, P., High, S.: Ost4 is a subunit of the mammalian oligosaccharyltransferase required for efficient n-glycosylation. Journal of cell science 126(12), 2595–2606 (2013)
Harada, Y., Ohkawa, Y., Kizuka, Y., Taniguchi, N.: Oligosaccharyltransferase: A gatekeeper of health and tumor progression. International journal of molecular sciences 20(23), 6074 (2019)
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Khennedy Bacule dos Santos, Israel Tojal da Silva, Mariana Cúri
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.