Diagnóstico de patologías de la columna vertebral utilizando ensemble con opción de rechazo
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1216Palabras clave:
Columna Vertebral, Confianza, Opción de RechazoResumen
Objetivo: Proponer un nuevo enfoque para la toma de decisiones con opción de rechazo en comités de clasificadores. Método: El método desarrollado abarca técnicas de clasificación utilizando ensamblajes con el enfoque de Opción de Rechazo, empleando el Índice de Gini (IG) como métrica de confianza. Establecimos umbrales basados en la distribución de los porcentajes de pureza obtenidos de cada clase, permitiendo que el modelo se abstenga de predecir muestras difíciles de clasificar en diagnósticos médicos relacionados con enfermedades de la columna vertebral. Resultados: El modelo propuesto superó las comparaciones, alcanzando una precisión del 97.55% y rechazando el 61.69% de las muestras en el escenario más conservador. La curva de Precisión y Rechazo destacó su superioridad. Conclusión: La definición de intervalos de valores del IG ofrece flexibilidad para ajustar la rigidez del comité, además de revelar un potencial para optimizar comités de clasificación en diversas aplicaciones, proporcionando mayor fiabilidad en el reconocimiento de patrones.
Citas
Reshi AA, Ashraf I, Rustam F, Shahzad HF, Mehmood A, Choi GS. Diagnosis of vertebral column pathologies using concatenated resampling with machine learning algorithms. PeerJ Comput Sci. 22 de julho de 2021;7:e547. DOI: https://doi.org/10.7717/peerj-cs.547
Rocha Neto AR, Sousa R, de A. Barreto G, Cardoso JS. Diagnostic of Pathology on the Vertebral Column with Embedded Reject Option. Em: Vitrià J, Sanches JM, Hernández M, organizadores. Pattern Recognition and Image Analysis. Berlin, Heidelberg: Springer; 2011. p. 588–95. DOI: https://doi.org/10.1007/978-3-642-21257-4_73
Nanglia S, Ahmad M, Ali Khan F, Jhanjhi NZ. An enhanced Predictive heterogeneous ensemble model for breast cancer prediction. Biomed Signal Process Control. 1o de fevereiro de 2022;72:103279. DOI: https://doi.org/10.1016/j.bspc.2021.103279
Zhang XY, Xie G, Li XC, Mei T, Liu CL. A Survey on Learning to Reject. Proc IEEE. 2023. DOI: https://doi.org/10.1109/JPROC.2023.3238024
Mienye ID, Sun Y. A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects. IEEE Access. 2022;10:99129–49. DOI: https://doi.org/10.1109/ACCESS.2022.3207287
Chow C. On optimum recognition error and reject tradeoff. IEEE Trans Inf Theory. 1970. DOI: https://doi.org/10.1109/TIT.1970.1054406
Bartlett PL, Wegkamp MH. Classification with a Reject Option using a Hinge Loss. J Mach Learn Res. 1o de junho de 2008;9:1823–40.
Fukunaga K. Introduction to statistical pattern recognition. 2. ed. San Diego [u.a.]: Acad. Press; 1990. DOI: https://doi.org/10.1016/B978-0-08-047865-4.50007-7
Dubuisson B, Masson M. A statistical decision rule with incomplete knowledge about classes. Pattern Recognit. 1o de janeiro de 1993;26(1):155–65. DOI: https://doi.org/10.1016/0031-3203(93)90097-G
Hellman ME. The Nearest Neighbor Classification Rule with a Reject Option. IEEE Trans Syst Sci Cybern. julho de 1970;6(3):179–85. DOI: https://doi.org/10.1109/TSSC.1970.300339
Cordella LP, Foggia P, Sansone C, Tortorella F, Vento M. Classification reliability and its use in multi-classifier systems. Em: Del Bimbo A, organizador. Image Analysis and Processing. Berlin, Heidelberg: Springer; 1997. p. 46–53. DOI: https://doi.org/10.1007/3-540-63507-6_183
Villon S, Mouillot D, Chaumont M, Subsol G, Claverie T, Villéger S. A new method to control error rates in automated species identification with deep learning algorithms. Sci Rep. 2020. DOI: https://doi.org/10.1038/s41598-020-67573-7
Guilherme Barreto AN. Vertebral Column [Internet]. UCI Machine Learning Repository; 2005. Disponível em: https://archive.ics.uci.edu/dataset/212
Ferreira AJ, Figueiredo MAT. Boosting Algorithms: A Review of Methods, Theory, and Applications. 2012. DOI: https://doi.org/10.1007/978-1-4419-9326-7_2
Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Em: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: Association for Computing Machinery; 2016. p. 785–94. Disponível em: https://dl.acm.org/doi/10.1145/2939672.2939785 DOI: https://doi.org/10.1145/2939672.2939785
Homenda W, Luckner M, Pedrycz W. Classification with rejection based on various SVM techniques. Em: 2014 International Joint Conference on Neural Networks (IJCNN). Beijing, China: IEEE; 2014. p. 3480–7. Disponível em: https://ieeexplore.ieee.org/document/6889655 DOI: https://doi.org/10.1109/IJCNN.2014.6889655
Tan PN, Steinbach M, Karpatne A, Kumar V. Introduction to Data Mining. Pearson; 2019.
Gamelas Sousa R, Rocha Neto AR, Cardoso JS, Barreto GA. Robust classification with reject option using the self-organizing map. Neural Comput Appl. 1o de outubro de 2015;26(7):1603–19. DOI: https://doi.org/10.1007/s00521-015-1822-2
Anand V, KiranBala B, Srividhya S, C. K, Younus M, Rahman MH. Gaussian Naïve Bayes Algorithm: A Reliable Technique Involved in the Assortment of the Segregation in Cancer. Mob Inf Syst. 17 de junho de 2022;2022:1–7. DOI: https://doi.org/10.1155/2022/2436946
Ballabio D, Todeschini R, Consonni V. Chapter 5 - Recent Advances in High-Level Fusion Methods to Classify Multiple Analytical Chemical Data. Em: Cocchi M, organizador. Data Fusion Methodology and Applications. Elsevier; 2019. p. 129–55. Disponível em: https://www.sciencedirect.com/science/article/pii/B9780444639844000053 DOI: https://doi.org/10.1016/B978-0-444-63984-4.00005-3
Dogan A, Birant D. A Weighted Majority Voting Ensemble Approach for Classification. Em: 2019 4th International Conference on Computer Science and Engineering (UBMK). 2019. p. 1–6. DOI: https://doi.org/10.1109/UBMK.2019.8907028
Yuan Y, Wu L, Zhang X. Gini-Impurity Index Analysis. IEEE Trans Inf Forensics Secur. 2021. DOI: https://doi.org/10.1109/TIFS.2021.3076932
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Reginaldo Pereira Fernandes Ribeiro, Ajalmar Rego da Rocha Neto, Thiago Alves Rocha
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.