A Multilabel Approach to Portuguese Clinical Named Entity Recognition

Autores/as

  • João Vitor Andrioli de Souza SBIS
  • Elisa Terumi Rubel Schneider
  • Josilaine Oliveira Cezar
  • Lucas Emanuel Silva e Oliveira
  • Yohan Bonescki Gumiel
  • Emerson Cabrera Paraiso
  • Douglas Teodoro
  • Claudia Maria Cabral Moro Barra

Palabras clave:

Clinical Named Entity Recognition, Label Powerset, BERT

Resumen

Objectives: Clinical Named Entity Recognition is a critical Natural Language Processing task, as it could support biomedical research and healthcare systems. While most extracted clinical entities are based on single-label concepts, it is very common in the clinical domain entities with more than one semantic category simultaneously. This work proposes BERT-based models to support multilabel clinical named entity recognition in the Portuguese language. Methods: For the experiment, we used the Label Powerset method applied to the multilabel corpus SemClinBr. Results: We compare our results with a Conditional Random Fields baseline, reaching +2.1 in precision, +11.2 in recall, and +7.4 in F1 with a clinical-biomedical BERT model (BioBERTpt). Conclusion: We achieved higher results for both exact and partial metrics, contributing to the multilabel semantic processing of clinical narratives in Portuguese.

Descargas

Los datos de descargas todavía no están disponibles.

Publicado

2021-03-15

Cómo citar

Souza, J. V. A. de, Schneider, E. T. R., Cezar, J. O., Oliveira, L. E. S. e, Gumiel, Y. B., Paraiso, E. C., … Barra, C. M. C. M. (2021). A Multilabel Approach to Portuguese Clinical Named Entity Recognition. Journal of Health Informatics, 12. Recuperado a partir de https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/840

Artículos similares

1 2 3 4 5 6 > >> 

También puede {advancedSearchLink} para este artículo.

Artículos más leídos del mismo autor/a