Explicabilidade baseada em conhecimento temporal: um estudo de casos em mHealth
DOI:
https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1272Palavras-chave:
Representação do Conhecimento, Explicabilidade, mHealthResumo
Objetivo: Investigar a geração de explicações para sistemas indutivos utilizando uma ontologia unificada que representa o estado de saúde de usuários móveis. Esta ontologia serve como conhecimento a priori, facilitando a geração de explicações. Método: Examinamos 24 aplicativos móveis de saúde (mHealth) para desenvolvimento da ontologia, enfatizando extensões que consideram aspectos temporais. Tais aspectos costumam ser negligenciados nas representações de saúde, dada a limitação das ontologias em modelar relações temporais ternárias. Em seguida, aplicamos diferentes configurações de um algoritmo indutivo que recebe esta ontologia como entrada, gerando explicações para seus resultados indutivos. Resultados: Experimentos mostram que a estrutura do modelo temporal afeta a legibilidade das explicações. Além disso, os experimentos enfatizam o tradeoff entre precisão e poder de generalização. Conclusão: As extensões temporais melhoram a expressividade das explicações, uma vez que as relações e conceitos temporais são explorados para melhor contextualizar fatos temporais associados a resultados indutivos.
Referências
Fong RC, Vedaldi A. Interpretable Explanations of Black Boxes by Meaningful Perturbation. Proceedings of the IEEE International Conference on Computer Vision, 2017, 3429-3437. DOI: https://doi.org/10.1109/ICCV.2017.371
Garcez ADA, et al. Neural-symbolic learning and reasoning: A survey and interpretation. Neuro-Symbolic Artificial Intelligence: The State of the Art, 2022, 342, 1-51.
Mastropietro A, et al. Multi-domain Model of Healthy Ageing: The Experience of the H2020 NESTORE Project. Italian Forum of Ambient Assisted Living, 2018, 13-21 DOI: https://doi.org/10.1007/978-3-030-05921-7_2
Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider PF. The Description Logic Handbook: Theory, Implementation, and Applications. 2010, Cambridge University Press.
Batsakis S, Petrakis E, Tachmazidis I, Antoniou G. Temporal representation and reasoning in OWL 2. Semantic Web, 2017, 8(6): 981–1000. DOI: https://doi.org/10.3233/SW-160248
Siebra C, Wac K. Engineering uncertain time for its practical integration in ontologies. Knowledge-based Systems. 2022, 251, 109152. DOI: https://doi.org/10.1016/j.knosys.2022.109152
Fallaize R, et al. Popular Nutrition-Related Mobile Apps: An Agreement Assessment Against a UK Reference Method. JMIR mHealth and uHealth. 2019, 7(2): e9838. DOI: https://doi.org/10.2196/mhealth.9838
Lewis M, Sutton A. Understanding Exercise Behaviour: Examining the Interaction of Exercise Motivation and Personality in Predicting Exercise Frequency. J. Sport Beh. 2011, 34(1): 82-97.
Procko T, Elvira T, Ochoa O, Del Rio N. An Exploration of Explainable Machine Learning Using Semantic Web Technology. IEEE 16th Int. Conf. on Semantic Computing, 2022, 143-146. DOI: https://doi.org/10.1109/ICSC52841.2022.00029
Giunti M, Sergioli G, Vivanet G, Pinna S. Representing n-ary relations in the Semantic Web. Logic Journal of the IGPL, 2019. DOI: https://doi.org/10.1093/jigpal/jzz047
Manea V, Hansen MS, Elbeyi SE, Wac K. Towards Personalizing Participation in Health Studies. Fourth Int. Workshop on Multimedia for Personal Health & Health Care, 2019, 32-39. DOI: https://doi.org/10.1145/3347444.3356241
Manea V, Wac K. MQOL: Mobile quality of life lab: From behavior change to QOL. Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, 2018, 642-647. DOI: https://doi.org/10.1145/3267305.3267549
Detrano R. et al. International application of a new probability algorithm for the diagnosis of coronary artery disease. American Journal of Cardiology. 1989. 64, 304-310. DOI: https://doi.org/10.1016/0002-9149(89)90524-9
Figueiredo EB et al.. Semântica em prontuários eletrônicos para oncologia pediátrica: uma revisão integrativa. Journal of Health Informatics. 2023, 15(2):61-9. DOI: https://doi.org/10.59681/2175-4411.v15.i2.2023.993
van der Veer SN, et al. Trading off accuracy and explainability in AI decision-making: findings from 2 citizens’ juries. J. American Medical Informatics Association. 2021, 28(10), 2128-2138. DOI: https://doi.org/10.1093/jamia/ocab127
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
A submissão de um artigo ao Journal of Health Informatics é entendida como exclusiva e que não está sendo considerada para publicação em outra revista. A permissão dos autores para a publicação de seu artigo no J. Health Inform. implica na exclusiva autorização concedida aos editores para incluí-lo na revista. Ao submeter um artigo, ao autor será solicitada a permissão eletrônica de um Termo de Transferência de Direitos Autorais. Uma mensagem eletrônica será enviada ao autor correspondente confirmando o recibo do manuscrito e o aceite da Declaração de Direito Autoral.