CovNet-UFCSPA: auxiliando no diagnóstico de pneumonia por coronavírus

Autores

  • Nouara Cândida Xavier Federal University of Health Sciences of Porto Alegre
  • Rochelle Lykawka Hospital de Clínicas de Porto Alegre
  • Alexandre Bacelar Hospital de Clínicas de Porto Alegre
  • Tiago Severo Garcia Hospital de Clínicas de Porto Alegre
  • Thatiane Alves Pianoschi Alva Federal University of Health Sciences of Porto Alegre
  • Mirko Salomón Alva Sánchez Federal University of Health Sciences of Porto Alegre
  • Carla Diniz Lopes Becker Federal University of Health Sciences of Porto Alegre

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1377

Palavras-chave:

COVID-19, Aprendizado Profundo, CNN

Resumo

Objective: This study introduces the CovNet-UFCSPA architecture, which incorporates pre-processing data from clinical images (X-rays) and deep learning algorithms. Method: A total of 24,235 images were used for training, validation, and testing of the model, identifying areas in the X-rays that influence the model's decision. Result: The architecture achieved a recall of 99% in classifying X-rays from patients at the Hospital de Clínicas de Porto Alegre (HCPA). The application of the CLAHE technique improved the region of interest in the X-rays, reducing the false negative rate from 187 to 9. Conclusion: Compared with Resnet50 V2 and Inception V3 architectures, CovNet-UFCSPA demonstrated superiority in false negative rates, true positives, and recall.

Biografias Autor

Nouara Cândida Xavier, Federal University of Health Sciences of Porto Alegre

M.Sc., Federal University of Health Sciences of Porto Alegre – UFCSPA, Porto Alegre (RS), Brazil.

Rochelle Lykawka, Hospital de Clínicas de Porto Alegre

M.Sc., Hospital de Clínicas de Porto Alegre, Porto Alegre (RS), Brazil, Brazil.

Alexandre Bacelar, Hospital de Clínicas de Porto Alegre

M.Sc., Hospital de Clínicas de Porto Alegre, Porto Alegre (RS), Brazil, Brazil.

Tiago Severo Garcia, Hospital de Clínicas de Porto Alegre

Ph.D, Hospital de Clínicas de Porto Alegre, Porto Alegre (RS), Brazil, Brazil.

Thatiane Alves Pianoschi Alva, Federal University of Health Sciences of Porto Alegre

 Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Mirko Salomón Alva Sánchez, Federal University of Health Sciences of Porto Alegre

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Carla Diniz Lopes Becker, Federal University of Health Sciences of Porto Alegre

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Referências

Gong J, Dong H, Xia SQ, Huang YZ, Wang D, Zhao Y, Liu W, Tu S, Zhang M, Wang Q, et al. Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19 pneumonia. MedRxiv. 2020.

Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, Chen H, Mubareka S, Gubbay JB, Chan WCW. Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 2020;14(4):3822-3835.

DATASUS. Equipments of Imaging Used in Health - E - DATASUS. DATASUS. Available at: http://tabnet.datasus.gov.br/tabdata/LivroIDB/2edrev/e18.pdf

Chassagnon G, Vakalopoulou M, Paragios N, Revel MP. Artificial intelligence applications for thoracic imaging. Eur J Radiol. 2020;123:108774.

Nahid AA, Sikder N, Bairagi AK, Razzaque M, Masud M, Kouzani AZ, Mahmud MA, et al. A novel method to identify pneumonia through analyzing chest radiographs employing a multichannel convolutional neural network. Sensors. 2020;20(12):3482.

Rajaraman S, Antani S. Training deep learning algorithms with weakly labeled pneumonia chest X-ray data for COVID-19 detection. medRxiv. 2020.

Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharya UR. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med. 2020;121:103792.

Mittal A, Singh K, Misra DP. Detecting COVID-19 using ResNet deep learning model with X-ray images. Biocybernetics and Biomedical Engineering. 2020.

Takara, K., Nishiyama, Y., & Sone, S. (2022). Artificial Intelligence System for Chest X-ray Diagnosis of COVID-19: Development and Validation Study. Journal of Medical Internet Research, 24(1), e30527.

Nouara Cândida Xavier, Tathiane Alves Pianoschi Alva, Carla Diniz Lopes Becker. Ciências da Saúde: uma abordagem holística. Editora Conhecimento Livre; 2022. Cap 5.

Gonzalez, Rafael C., and Richard E. Woods. Processamento de imagens digitais. Editora Blucher, 2000.

Chollet F. Deep learning with Python. Simon and Schuster; 2021.

Yamashita R, Nishio M, Do RK, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights into Imaging. 2018;9(4):611-629.

O'Shea K, Nash R. An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458. 2015.

Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET). IEEE; 2017. pp. 1-6.

scikit. Sklearn.utils.class_weight.compute_class_weight. [Online]. Available in: https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html. Access at: 2024.

Cross-validation: evaluating estimator performance. [Online]. Available in: https://scikit-learn.org/stable/modules/cross_validation.html. Access at: 2024

Publicado

2024-11-19

Como Citar

Xavier, N. C., Lykawka, R., Bacelar, A., Garcia, T. S., Alva, T. A. P., Sánchez, M. S. A., & Becker, C. D. L. (2024). CovNet-UFCSPA: auxiliando no diagnóstico de pneumonia por coronavírus. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1377

Artigos Similares

1 2 3 4 5 6 7 8 9 > >> 

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.

Artigos mais lidos do(s) mesmo(s) autor(es)